Previous |  Up |  Next

Article

Title: Spectra of extended double cover graphs (English)
Author: Chen, Zhibo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 1077-1082
Summary lang: English
.
Category: math
.
Summary: The construction of the extended double cover was introduced by N. Alon [1] in 1986. For a simple graph $G$ with vertex set $V = \lbrace v_1,v_2, \dots , v_n \rbrace $, the extended double cover of $G$, denoted $G^*$, is the bipartite graph with bipartition $(X,Y)$ where $X = \lbrace x_1, x_2, \dots ,x_n \rbrace $ and $ Y = \lbrace y_1, y_2, \cdots ,y_n \rbrace $, in which $x_i$ and $y_j$ are adjacent iff $i=j$ or $v_i$ and $v_j$ are adjacent in $G$. In this paper we obtain formulas for the characteristic polynomial and the spectrum of $G^*$ in terms of the corresponding information of $G$. Three formulas are derived for the number of spanning trees in $G^*$ for a connected regular graph $G$. We show that while the extended double covers of cospectral graphs are cospectral, the converse does not hold. Some results on the spectra of the $n$th iterared double cover are also presented. (English)
Keyword: charateristic polynomial of graph
Keyword: graph spectra
Keyword: extended double cover of graph
MSC: 05C30
MSC: 05C50
idZBL: Zbl 1080.05516
idMR: MR2100015
.
Date available: 2009-09-24T11:20:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127952
.
Reference: [1] N. Alon: Eigenvalues and expanders.Combinatorica 6 (1986), 83–96. Zbl 0661.05053, MR 0875835, 10.1007/BF02579166
Reference: [2] N. Biggs: Algebraic Graph Theory.Cambridge Univ. Press, Cambridge, 1974, 1993. MR 1271140
Reference: [3] J. A. Bondy and U. S. R. Murty: Graph Theory with Applications.North-Holland, New York, 1979. MR 0538028
Reference: [4] F. R. K. Chung: Spectral Graph Theory.Amer. Math. Soc., Rhode Island, 1997. Zbl 0867.05046, MR 1421568
Reference: [5] D. M. Cvetković, M. Doob, I. Gutman and A.  Torgasev: Recent Results in the Theory of Graph Spectra.North-Holand, New York, 1987. MR 0926481
Reference: [6] D. M. Cvetković, M. Doob and H. Sachs: Spectra of Graphs.Academic Press, New York, 1980; third edition: Johann Ambrosius Barth Verlag, 1995. MR 0572262
Reference: [7] D. M. Cvetković, P. Rowlinson and S. Simić: Eigenspaces of Graphs.Cambridge Univ. Press, Cambridge, 1997. MR 1440854
Reference: [8] F. R. Grantmacher: Theory of matrices, Vol.  I.Chelsea, New York, 1960.
Reference: [9] P. Rowlinson: The characteristic polynomials of modified graphs.Discrete Appl. Math. 67 (1996), 209–219. Zbl 0851.05076, MR 1393305, 10.1016/0166-218X(96)85159-6
Reference: [10] A. J. Schwenk: Computing the charateristic polynomial of a graph.In: Graphs and Combinatorics. Lecture Notes in Mathematics Vol.  406, R.  Bari, F.  Harary (eds.), Springer-Verlag, New York, 1974, pp. 153–172. MR 0387126
Reference: [11] F. Zhang and Z. Chen: Ordering graphs with small index and its application.Discrete Appl. Math 121 (2002), 295–306. MR 1907562, 10.1016/S0166-218X(01)00302-X
.

Files

Files Size Format View
CzechMathJ_54-2004-4_20.pdf 291.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo