Previous |  Up |  Next

Article

Keywords:
dually residuated lattice ordered monoid; ideal; normal ideal
Summary:
In this paper, we introduce the concept of an ideal of a noncommutative dually residuated lattice ordered monoid and we show that congruence relations and certain ideals are in a one-to-one correspondence.
References:
[1] A. Di Nola, G. Georgescu and A. Iorgulescu: Pseudo $BL$-algebras: Part  I. Mult. Val. Logic 8 (2002), 673–714. MR 1948853
[2] A. Dvurečenskij: On pseudo $MV$-algebras. Soft Comp. 5 (2001), 347–354. DOI 10.1007/s005000100136
[3] A. Dvurečenskij: Pseudo $MV$-algebras are intervals in $\ell $-groups. J.  Austral. Math. Soc. 72 (2002), 427–445. DOI 10.1017/S1446788700036806 | MR 1902211
[4] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras. Mult. Val. Logic 6 (2001), 95–135. MR 1817439
[5] G. Grätzer: General Lattice Theory. Birkhäuser-Verlag, Basel-Boston-Berlin, 1998. MR 1670580
[6] I. Chajda: Congruence kernels in weakly regular varieties. Southeast Asian Bull. Math. 24 (2000), 15–18. DOI 10.1007/s10012-000-0015-8 | MR 1811209 | Zbl 0988.08002
[7] I. Chajda, R. Halaš and J.  Rachůnek: Ideals and congruences in generalized $MV$-algebras. Demonstratio Math. 33 (2000), 213–222. MR 1769414
[8] T. Kovář: A general theory of dually residuated lattice ordered monoids. PhD.  Thesis, Palacký Univ. Olomouc, 1996.
[9] J. Rachůnek: Prime ideals in autometrized algebras. Czechoslovak Math.  J. 112 (1987), 65–69. MR 0875128
[10] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czechoslovak Math.  J. 52 (2002), 255–273. DOI 10.1023/A:1021766309509
[11] K. L. N. Swamy: Dually residuated lattice ordered semigroups  I. Math. Ann. 159 (1965), 105–114. DOI 10.1007/BF01360284 | MR 0183797
[12] K. L. N. Swamy: Dually residuated lattice ordered semigroups  III. Math. Ann. 167 (1966), 71–74. DOI 10.1007/BF01361218 | MR 0200364 | Zbl 0158.02601
Partner of
EuDML logo