Previous |  Up |  Next

Article

Title: Ideals of noncommutative $DR\ell$-monoids (English)
Author: Kühr, Jan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 97-111
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce the concept of an ideal of a noncommutative dually residuated lattice ordered monoid and we show that congruence relations and certain ideals are in a one-to-one correspondence. (English)
Keyword: dually residuated lattice ordered monoid
Keyword: ideal
Keyword: normal ideal
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1081.06017
idMR: MR2121658
.
Date available: 2009-09-24T11:21:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127961
.
Reference: [1] A. Di Nola, G. Georgescu and A. Iorgulescu: Pseudo $BL$-algebras: Part  I.Mult. Val. Logic 8 (2002), 673–714. MR 1948853
Reference: [2] A. Dvurečenskij: On pseudo $MV$-algebras.Soft Comp. 5 (2001), 347–354. MR 1865858, 10.1007/s005000100136
Reference: [3] A. Dvurečenskij: Pseudo $MV$-algebras are intervals in $\ell $-groups.J.  Austral. Math. Soc. 72 (2002), 427–445. MR 1902211, 10.1017/S1446788700036806
Reference: [4] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras.Mult. Val. Logic 6 (2001), 95–135. MR 1817439
Reference: [5] G. Grätzer: General Lattice Theory.Birkhäuser-Verlag, Basel-Boston-Berlin, 1998. MR 1670580
Reference: [6] I. Chajda: Congruence kernels in weakly regular varieties.Southeast Asian Bull. Math. 24 (2000), 15–18. Zbl 0988.08002, MR 1811209, 10.1007/s10012-000-0015-8
Reference: [7] I. Chajda, R. Halaš and J.  Rachůnek: Ideals and congruences in generalized $MV$-algebras.Demonstratio Math. 33 (2000), 213–222. MR 1769414, 10.1515/dema-2000-0202
Reference: [8] T. Kovář: A general theory of dually residuated lattice ordered monoids.PhD.  Thesis, Palacký Univ. Olomouc, 1996.
Reference: [9] J. Rachůnek: Prime ideals in autometrized algebras.Czechoslovak Math.  J. 112 (1987), 65–69. MR 0875128
Reference: [10] J. Rachůnek: A non-commutative generalization of $MV$-algebras.Czechoslovak Math.  J. 52 (2002), 255–273. MR 1905434, 10.1023/A:1021766309509
Reference: [11] K. L. N. Swamy: Dually residuated lattice ordered semigroups  I.Math. Ann. 159 (1965), 105–114. MR 0183797, 10.1007/BF01360284
Reference: [12] K. L. N. Swamy: Dually residuated lattice ordered semigroups  III.Math. Ann. 167 (1966), 71–74. Zbl 0158.02601, MR 0200364, 10.1007/BF01361218
.

Files

Files Size Format View
CzechMathJ_55-2005-1_6.pdf 347.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo