Previous |  Up |  Next

Article

Title: Orbits connecting singular points in the plane (English)
Author: Ding, Changming
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 125-132
Summary lang: English
.
Category: math
.
Summary: This paper concerns the global structure of planar systems. It is shown that if a positively bounded system with two singular points has no closed orbits, the set of all bounded solutions is compact and simply connected. Also it is shown that for such a system the existence of connecting orbits is tightly related to the behavior of homoclinic orbits. A necessary and sufficient condition for the existence of connecting orbits is given. The number of connecting orbits is also discussed. (English)
Keyword: connecting orbit
Keyword: homoclinic orbit
Keyword: positively bounded system
MSC: 34C11
MSC: 34C35
MSC: 34C37
MSC: 37C29
idZBL: Zbl 1081.37002
idMR: MR2121660
.
Date available: 2009-09-24T11:21:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127963
.
Reference: [1] C. C. Conley: Isolated invariant sets and Morse index.(Conf. Board Math. Sci., No 38), Amer. Math. Sci., Providence, 1978. MR 0511133
Reference: [2] C. C. Conley and J. A. Smoller: Viscosity matrices for two-dimensional nonlinear hyperbolic system.Comm. Pure Appl. Math. 23 (1970), 867–884. MR 0274956, 10.1002/cpa.3160230603
Reference: [3] C. C. Conley and J. A. Smoller: The existence of heteroclinic orbits and applications.In: Dynamical Systems, Theory and Applications. Lecture Notes in Physics, Vol. 38, J.  Moser (ed.), Springer-Verlag, New York, 1975, pp. 551–524. MR 0454416
Reference: [4] C. Ding: The homoclinic orbits in the Liénard plane.J.  Math. Anal. Appl. 191 (1995), 26–39. Zbl 0824.34050, MR 1323762, 10.1016/S0022-247X(85)71118-3
Reference: [5] C. Ding: Connecting orbits of gradient-like systems in $R^n$.Acta Mathematica Sinica 43 (2000), 1115–1118.
Reference: [6] I. M. Gelfand: Some problems in the theory of quasilinear equations.Usp. Mat. Nauk. 14 (1959), 87–158. MR 0110868
Reference: [7] P. Hartman: Ordinary Differential Equations. 2nd ed.Birkhäuser-Verlag, Boston, 1985. MR 0658490
Reference: [8] H. Tusen: Orbits connecting singular points.Acta Mathematica Sinica 40 (1997), 551–558.
Reference: [9] H. Tusen: Some global properties in dynamical systems.PhD.  thesis, Inst. of Math., Academia Sinica, 1998.
Reference: [10] S. Yu: Isolating blocks and the existence of connecting orbits.Science in China (Series  A) 27 (1997), 298–301. MR 1465168
Reference: [11] S. Yu: Orbits connecting critical points of differential equations depending on a parameter.J.  Math. Anal. Appl. 261 (2001), 282–288. Zbl 0996.34036, MR 1850973, 10.1006/jmaa.2001.7511
Reference: [12] S. Zhang and Z. Zheng: Global structure for a class dynamical systems.Chaos, Solitons and Fractals 11 (2000), 735–741. MR 1739466, 10.1016/S0960-0779(98)00184-2
Reference: [13] C. Zhao and X. Wang: The existence and uniqueness of trajectories joining critical points for differential equations in  $R^3$.Chaos, Solitons and Fractals 12 (2001), 153–158. MR 1786916
.

Files

Files Size Format View
CzechMathJ_55-2005-1_8.pdf 311.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo