Previous |  Up |  Next

Article

Title: Nonlinear boundary value problems for second order differential inclusions (English)
Author: Kyritsi, Sophia Th.
Author: Matzakos, Nikolaos
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 545-579
Summary lang: English
.
Category: math
.
Summary: In this paper we study two boundary value problems for second order strongly nonlinear differential inclusions involving a maximal monotone term. The first is a vector problem with Dirichlet boundary conditions and a nonlinear differential operator of the form $x\mapsto a(x,x^{\prime })^{\prime }$. In this problem the maximal monotone term is required to be defined everywhere in the state space $\mathbb{R}^N$. The second problem is a scalar problem with periodic boundary conditions and a differential operator of the form $x\mapsto (a(x)x^{\prime })^{\prime }$. In this case the maximal monotone term need not be defined everywhere, incorporating into our framework differential variational inequalities. Using techniques from multivalued analysis and from nonlinear analysis, we prove the existence of solutions for both problems under convexity and nonconvexity conditions on the multivalued right-hand side. (English)
Keyword: measurable multifunction
Keyword: usc and lsc multifunction
Keyword: maximal monotone operator
Keyword: pseudomonotone operator
Keyword: generalized pseudomonotone operator
Keyword: coercive operator
Keyword: surjective operator
Keyword: eigenvalue
Keyword: eigenfunction
Keyword: Rayleigh quotient
Keyword: $p$-Laplacian
Keyword: Yosida approximation
Keyword: periodic problem.
MSC: 34B15
MSC: 47J05
MSC: 47N20
idZBL: Zbl 1081.34020
idMR: MR2153083
.
Date available: 2009-09-24T11:25:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128003
.
Reference: [1] R.  Bader: A topological fixed point index theory for evolution inclusions.Zeitsh. Anal. Anwend. 20 (2001), 3–15. Zbl 0985.34053, MR 1826317, 10.4171/ZAA/1001
Reference: [2] L.  Boccardo, P.  Drábek, D.  Giachetti and M.  Kučera: Generalization of the Fredholm alternative for nonlinear differential operators.Nonlin. Anal. 10 (1986), 1083–1103. MR 0857742, 10.1016/0362-546X(86)90091-X
Reference: [3] H.  Brezis: Operateurs Maximaux Monotones.North-Holland, Amsterdam, 1973. Zbl 0252.47055
Reference: [4] F.  Browder and P.  Hess: Nonlinear mappings of monotone type in Banach spaces.J.  Funct. Anal. 11 (1972), 251–254. MR 0365242, 10.1016/0022-1236(72)90070-5
Reference: [5] F. H.  Clarke: Optimization and Nonsmooth Analysis.Wiley, New York, 1983. Zbl 0582.49001, MR 0709590
Reference: [6] D.  Cohn: Measure Theory.Birkhauser-Verlag, Boston, 1980. Zbl 0436.28001, MR 0578344
Reference: [7] H.  Dang and S. F.  Oppenheimer: Existence and uniqueness results for some nonlinear boundary value problems.J.  Math. Anal. Appl. 198 (1996), 35–48. MR 1373525, 10.1006/jmaa.1996.0066
Reference: [8] M.  Del Pino, M. Elgueta and R.  Manasevich: A homotopic deformation along  $p$ of a Leray-Schauder degree result and existence for $(|u^{\prime }|^{p-2} u^{\prime })^{\prime } + f(t,u)=0$, $u(0)=u(T)=0$.J.  Differential Equations 80 (1989), 1–13. MR 1003248, 10.1016/0022-0396(89)90093-4
Reference: [9] P.  Drábek: Solvability of boundary value problems with homogeneous ordinary differential operator.Rend. Ist. Mat. Univ. Trieste 8 (1986), 105–124. MR 0928322
Reference: [10] L.  Erbe and W.  Krawcewicz: Nonlinear boundary value problems for differential inclusions $y^{\prime \prime }\in F(t,y,y^{\prime })$.Ann. Pol. Math. 54 (1991), 195–226. MR 1114171, 10.4064/ap-54-3-195-226
Reference: [11] L.  Erbe and W.  Krawcewicz: Boundary value problems differential inclusions.Lect. Notes Pure Appl. Math., No.  127, Marcel-Dekker, New York, 1990, pp. 115–135. MR 1096748
Reference: [12] L.  Erbe and W.  Krawcewicz: Existence of solutions to boundary value problems for impulsive second order differential inclusions.Rocky Mountain J.  Math. 22 (1992), 519–539. MR 1180717, 10.1216/rmjm/1181072746
Reference: [13] L.  Erbe, W. Krawcewicz and G. Peschke: Bifurcation of a parametrized family of boundary value problems for second order differential inclusions.Ann. Mat. Pura Appl. 166 (1993), 169–195. MR 1271418, 10.1007/BF01765848
Reference: [14] C.  Fabry and D.  Fayyad: Periodic solutions of second order differential equations with a $p$-Laplacian and asymmetric nonlinearities.Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. MR 1310080
Reference: [15] M.  Frigon: Application de la theorie de la transversalite topologique a des problemes non lineaires pour des equations differentielles ordinaires.Dissertationes Math. 269 (1990). Zbl 0728.34017, MR 1075674
Reference: [16] M.  Frigon: Theoremes d’existence des solutions d’inclusions differentielle.In: Topological Methods in Diferential Equations and Inclusions. NATO ASI Series, Section  C, Vol. 472, Kluwer, Dordrecht, 1995, pp. 51–87. MR 1368670
Reference: [17] M.  Frigon and A.  Granas: Problemes aux limites pour des inclusions differentielles de type semi-continues inferieurement.Rivista Mat. Univ. Parma 17 (1991), 87–97. MR 1174938
Reference: [18] S.  Fučík, J.  Nečas, J.  Souček and V.  Souček: Spectral Analysis of Nonlinear Operators. Lecture Notes in Math., Vol.  346.Springer-Verlag, Berlin, 1973. MR 0467421
Reference: [19] Z.  Guo: Boundary value problems of a class of quasilinear differential equations.Diff. Intergral Eqns 6 (1993), 705–719.
Reference: [20] N.  Halidias and N. S.  Papageorgiou: Existence and relaxation results for nonlinear second order multivalued boundary value problems in  $\mathbb{R}^N$.J.  Diff. Eqns 147 (1998), 123–154. MR 1632661, 10.1006/jdeq.1998.3439
Reference: [21] N.  Halidias and N. S.  Papageorgiou: Existence of solutions for quasilinear second order differential inclusions with nonlinear boundary conditions.J.  Comput. Appl. Math. 113 (2000), 51–64. MR 1735812, 10.1016/S0377-0427(99)00243-5
Reference: [22] P.  Hartman: Ordinary Differential Equations, 2nd Edition.Birkhauser-Verlag, Boston-Basel-Stuttgart, 1982. MR 0658490
Reference: [23] S.  Hu and N. S.  Papageorgiou: Handbook of Multivalued Analysis. Volume  I: Theory.Kluwer, Dordrecht, 1997. MR 1485775
Reference: [24] S.  Hu and N. S.  Papageorgiou: Handbook of Multivalued Analysis. Volume  II: Applications.Kluwer, Dordrecht, 2000. MR 1741926
Reference: [25] D.  Kandilakis and N. S.  Papageorgiou: Existence theorems for nonlinear boundary value problems for second order differential inclusions.J.  Differential Equations 132 (1996), 107–125. MR 1418502, 10.1006/jdeq.1996.0173
Reference: [26] E.  Klein and A.  Thompson: Theory of Correspondences.Wiley, New York, 1984. MR 0752692
Reference: [27] S. Th.  Kyritsi, N.  Matzakos and N. S.  Papageorgiou: Periodic problems for strongly nonlinear second order differential inclusions.J.  Differential Equations 183 (2002), 279–302. MR 1919781, 10.1006/jdeq.2001.4110
Reference: [28] R.  Manasevich and J.  Mawhin: Periodic solutions for nonlinear systems with $p$-Laplacian-like operators.J.  Differential Equations 145 (1998), 367–393. MR 1621038, 10.1006/jdeq.1998.3425
Reference: [29] R.  Manasevich and J.  Mawhin: Boundary value problems for nonlinear perturbations of vector $p$-Laplacian-like operators.J.  Korean Math. Soc. 37 (2000), 665–685. MR 1783579
Reference: [30] M.  Marcus and V.  Mizel: Absolute continuity on tracks and mappings of Sobolev spaces.Arch. Rational Mech. Anal. 45 (1972), 294–320. MR 0338765, 10.1007/BF00251378
Reference: [31 J.  Mawhin and M.  Willem] : Critical Point Theory and Hamiltonian Systems.Springer-Verlag, New York, 1989. Zbl 0676.58017, MR 0982267
Reference: [32] Z.  Naniewicz and P.  Panagiotopoulos: Mathematical Theory of Hemivariational Inequalities and Applications.Marcel Dekker, New York, 1994. MR 1304257
Reference: [33] N. S.  Papageorgiou: Convergence theorems for Banach soace valued integrable multifunctions.Intern. J.  Math. Sc. 10 (1987), 433–442. MR 0896595, 10.1155/S0161171287000516
Reference: [34] T.  Pruszko: Some applications of the topological deggre theory to multivalued boundary value problems.Dissertationes Math. 229 (1984). MR 0741752
Reference: [35] D.  Wagner: Survey of measurable selection theorems.SIAM J.  Control Optim. 15 (1977), . Zbl 0407.28006, MR 0486391, 10.1137/0315056
Reference: [36] E.  Zeidler: Nonlinear Functional Analysis and its Applications  II.Springer-Verlag, New York, 1990. Zbl 0684.47029, MR 0816732
.

Files

Files Size Format View
CzechMathJ_55-2005-3_1.pdf 525.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo