Previous |  Up |  Next

Article

Title: Boundary value problems with compatible boundary conditions (English)
Author: Karakostas, G. L.
Author: Palamides, P. K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 581-592
Summary lang: English
.
Category: math
.
Summary: If $Y$ is a subset of the space $\mathbb{R}^{n}\times {\mathbb{R}^{n}}$, we call a pair of continuous functions $U$, $V$ $Y$-compatible, if they map the space $\mathbb{R}^{n}$ into itself and satisfy $Ux\cdot Vy\ge 0$, for all $(x,y)\in Y$ with $x\cdot y\ge {0}$. (Dot denotes inner product.) In this paper a nonlinear two point boundary value problem for a second order ordinary differential $n$-dimensional system is investigated, provided the boundary conditions are given via a pair of compatible mappings. By using a truncation of the initial equation and restrictions of its domain, Brouwer’s fixed point theorem is applied to the composition of the consequent mapping with some projections and a one-parameter family of fixed points $P_{\delta }$ is obtained. Then passing to the limits as $\delta $ tends to zero the so-obtained accumulation points are solutions of the problem. (English)
Keyword: differential equations of second order
Keyword: two-point boundary value problems
MSC: 34B15
MSC: 34C30
MSC: 34C99
idZBL: Zbl 1081.34039
idMR: MR2153084
.
Date available: 2009-09-24T11:25:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128004
.
Reference: [1.] J. W. Bebernes and K. Schmitt: Periodic boundary value problems for systems of second order differential equations.J. Differential Equations 13 (1973), 32–47. MR 0340700, 10.1016/0022-0396(73)90030-2
Reference: [2] W. A.  Coppel: Stability and Asymptotic Behavior of Differential Equations. Heath Mathematical Monographs.Heat and Company, Boston, 1965. MR 0190463
Reference: [3] L. H. Erbe and P. K. Palamides: Boundary value problems for second order differential equations.J.  Math. Anal. Appl. 127 (1987), 80–92. MR 0904211, 10.1016/0022-247X(87)90141-7
Reference: [4] J. K. Hale: Ordinary Differential Equations.Krieger Publ., Malabar, 1980. Zbl 0433.34003, MR 0587488
Reference: [5] L. Jackson and P. K. Palamides: An existence theorem for a nonlinear two-point boundary value problem.J.  Differential Equations 53 (1984), 48–66. MR 0747406, 10.1016/0022-0396(84)90025-1
Reference: [6] G. Karakostas and P. K. Palamides: A boundary value problem for operator equations in Hilbert spaces.J.  Math. Anal. Appl. 261 (2001), 289–294. MR 1850974, 10.1006/jmaa.2001.7523
Reference: [7] J.  Mawhin: Topological Degree Methods in Nonlinear Boundary Value Problems.CBMS Regional Conf. Series No.  40 AMS, Providence, 1979. Zbl 0414.34025, MR 0525202
Reference: [8] J.  Mawhin: Continuation theorems and periodic solutions of ordinary differential equations.In: Topological Methods in Differential equations and inclusions. NATO ASI Series Vol. 472, A. Granas (ed.), Kluwer Acad. Publ., Dordrecht, 1995. Zbl 0834.34047, MR 1368675
Reference: [9] Dong Yujun: On solvability of second-order Sturm-Liouville boundary value problems at resonance.Proc. Amer. Math. Soc. 126 (1998), 145–152. MR 1443173, 10.1090/S0002-9939-98-04212-9
.

Files

Files Size Format View
CzechMathJ_55-2005-3_2.pdf 340.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo