Previous |  Up |  Next

Article

Title: Extensions, dilations and functional models of infinite Jacobi matrix (English)
Author: Allahverdiev, B. P.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 593-609
Summary lang: English
.
Category: math
.
Summary: A space of boundary values is constructed for the minimal symmetric operator generated by an infinite Jacobi matrix in the limit-circle case. A description of all maximal dissipative, accretive and selfadjoint extensions of such a symmetric operator is given in terms of boundary conditions at infinity. We construct a selfadjoint dilation of maximal dissipative operator and its incoming and outgoing spectral representations, which makes it possible to determine the scattering matrix of dilation. We construct a functional model of the dissipative operator and define its characteristic function. We prove a theorem on the completeness of the system of eigenvectors and associated vectors of dissipative operators. (English)
Keyword: infinite Jacobi matrix
Keyword: symmetric operator
Keyword: selfadjoint and nonselfadjoint extensions
Keyword: maximal dissipative operator
Keyword: selfadjoint dilation
Keyword: scattering matrix
Keyword: functional model
Keyword: characteristic function
Keyword: completeness of the system of eigenvectors and associated vectors
MSC: 47A20
MSC: 47A40
MSC: 47A45
MSC: 47B25
MSC: 47B36
MSC: 47B39
MSC: 47B44
idZBL: Zbl 1081.47036
idMR: MR2153085
.
Date available: 2009-09-24T11:25:51Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128005
.
Reference: [1] N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis.Fizmatgiz, Moscow, 1961.
Reference: [2] F. V. Atkinson: Discrete and Continuous Boundary Problems.Academic Press, New York, 1964. Zbl 0117.05806, MR 0176141
Reference: [3] M. Benammar, W.  D. Evans: On the Friedrichs extension of semi-bounded difference operators.Math. Proc. Camb. Philos. Soc. 116 (1994), 167–177. MR 1274167, 10.1017/S0305004100072467
Reference: [4] Yu. M. Berezanskij: Expansion in Eigenfunctions of Selfadjoint Operators.Naukova Dumka, Kiev, 1965.
Reference: [5] V. M. Bruk: On a class of boundary-value problems with a spectral parameter in the boundary conditions.Mat. Sb. 100 (1976), 210–216. MR 0415381
Reference: [6] L. S. Clark: A spectral analysis for self-adjoint operators generated by a class of second order difference equations.J.  Math. Anal. Appl. 197 (1996), 267–285. Zbl 0857.39008, MR 1371289, 10.1006/jmaa.1996.0020
Reference: [7] M. L Gorbachuk, V. I. Gorbachuk and A. N. Kochubei: The theory of extensions of symmetric operators and boundary-value problems for differential equations.Ukrain. Mat. Zh. 41 (1989), 1299–1312. MR 1034669
Reference: [8] V. I. Gorbachuk and M. L. Gorbachuk: Boundary Value Problems for Operator Differential Equations.Naukova Dumka, Kiev, 1984. MR 1190695
Reference: [9] A. N. Kochubei: Extensions of symmetric operators and symmetric binary relations.Mat. Zametki 17 (1975), 41–48. MR 0365218
Reference: [10] A. Kuzhel: Characteristic Functions and Models of Nonself-adjoint Operators.Kluwer, Boston-London-Dordrecht, 1996. Zbl 0927.47005
Reference: [11] P. D. Lax and R. S. Phillips: Scattering Theory.Academic Press, New York, 1967.
Reference: [12] B. Sz.-Nagy and C. Foias: Analyse Harmonique des Operateurs de l’espace de Hilbert.Masson and Akad Kiadó, Paris and Budapest, 1967. MR 0225183
Reference: [13] J. von Neumann: Allgemeine Eigenwerttheorie Hermitischer Funktionaloperatoren.Math. Ann. 102 (1929), 49–131. 10.1007/BF01782338
Reference: [14] F. S. Rofe-Beketov: Self-adjoint extensions of differential operators in space of vector-valued functions.Dokl. Akad. Nauk SSSR 184 (1969), 1034–1037. MR 0244808
Reference: [15] M. M. Stone: Linear Transformations in Hilbert Space and Their Applications to Analysis, Vol.  15.Amer. Math. Soc. Coll. Publ., Providence, 1932. MR 1451877
Reference: [16] S. T. Welstead: Boundary conditions at infinity for difference equations of limit-circle type.J.  Math. Anal. Appl. 89 (1982), 442–461. Zbl 0493.39002, MR 0677740, 10.1016/0022-247X(82)90112-3
Reference: [17] H. Weyl: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Functionen.Math. Ann. 68 (1910), 222–269.
.

Files

Files Size Format View
CzechMathJ_55-2005-3_3.pdf 389.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo