Title:
|
Extensions, dilations and functional models of infinite Jacobi matrix (English) |
Author:
|
Allahverdiev, B. P. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
3 |
Year:
|
2005 |
Pages:
|
593-609 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A space of boundary values is constructed for the minimal symmetric operator generated by an infinite Jacobi matrix in the limit-circle case. A description of all maximal dissipative, accretive and selfadjoint extensions of such a symmetric operator is given in terms of boundary conditions at infinity. We construct a selfadjoint dilation of maximal dissipative operator and its incoming and outgoing spectral representations, which makes it possible to determine the scattering matrix of dilation. We construct a functional model of the dissipative operator and define its characteristic function. We prove a theorem on the completeness of the system of eigenvectors and associated vectors of dissipative operators. (English) |
Keyword:
|
infinite Jacobi matrix |
Keyword:
|
symmetric operator |
Keyword:
|
selfadjoint and nonselfadjoint extensions |
Keyword:
|
maximal dissipative operator |
Keyword:
|
selfadjoint dilation |
Keyword:
|
scattering matrix |
Keyword:
|
functional model |
Keyword:
|
characteristic function |
Keyword:
|
completeness of the system of eigenvectors and associated vectors |
MSC:
|
47A20 |
MSC:
|
47A40 |
MSC:
|
47A45 |
MSC:
|
47B25 |
MSC:
|
47B36 |
MSC:
|
47B39 |
MSC:
|
47B44 |
idZBL:
|
Zbl 1081.47036 |
idMR:
|
MR2153085 |
. |
Date available:
|
2009-09-24T11:25:51Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128005 |
. |
Reference:
|
[1] N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis.Fizmatgiz, Moscow, 1961. |
Reference:
|
[2] F. V. Atkinson: Discrete and Continuous Boundary Problems.Academic Press, New York, 1964. Zbl 0117.05806, MR 0176141 |
Reference:
|
[3] M. Benammar, W. D. Evans: On the Friedrichs extension of semi-bounded difference operators.Math. Proc. Camb. Philos. Soc. 116 (1994), 167–177. MR 1274167, 10.1017/S0305004100072467 |
Reference:
|
[4] Yu. M. Berezanskij: Expansion in Eigenfunctions of Selfadjoint Operators.Naukova Dumka, Kiev, 1965. |
Reference:
|
[5] V. M. Bruk: On a class of boundary-value problems with a spectral parameter in the boundary conditions.Mat. Sb. 100 (1976), 210–216. MR 0415381 |
Reference:
|
[6] L. S. Clark: A spectral analysis for self-adjoint operators generated by a class of second order difference equations.J. Math. Anal. Appl. 197 (1996), 267–285. Zbl 0857.39008, MR 1371289, 10.1006/jmaa.1996.0020 |
Reference:
|
[7] M. L Gorbachuk, V. I. Gorbachuk and A. N. Kochubei: The theory of extensions of symmetric operators and boundary-value problems for differential equations.Ukrain. Mat. Zh. 41 (1989), 1299–1312. MR 1034669 |
Reference:
|
[8] V. I. Gorbachuk and M. L. Gorbachuk: Boundary Value Problems for Operator Differential Equations.Naukova Dumka, Kiev, 1984. MR 1190695 |
Reference:
|
[9] A. N. Kochubei: Extensions of symmetric operators and symmetric binary relations.Mat. Zametki 17 (1975), 41–48. MR 0365218 |
Reference:
|
[10] A. Kuzhel: Characteristic Functions and Models of Nonself-adjoint Operators.Kluwer, Boston-London-Dordrecht, 1996. Zbl 0927.47005 |
Reference:
|
[11] P. D. Lax and R. S. Phillips: Scattering Theory.Academic Press, New York, 1967. |
Reference:
|
[12] B. Sz.-Nagy and C. Foias: Analyse Harmonique des Operateurs de l’espace de Hilbert.Masson and Akad Kiadó, Paris and Budapest, 1967. MR 0225183 |
Reference:
|
[13] J. von Neumann: Allgemeine Eigenwerttheorie Hermitischer Funktionaloperatoren.Math. Ann. 102 (1929), 49–131. 10.1007/BF01782338 |
Reference:
|
[14] F. S. Rofe-Beketov: Self-adjoint extensions of differential operators in space of vector-valued functions.Dokl. Akad. Nauk SSSR 184 (1969), 1034–1037. MR 0244808 |
Reference:
|
[15] M. M. Stone: Linear Transformations in Hilbert Space and Their Applications to Analysis, Vol. 15.Amer. Math. Soc. Coll. Publ., Providence, 1932. MR 1451877 |
Reference:
|
[16] S. T. Welstead: Boundary conditions at infinity for difference equations of limit-circle type.J. Math. Anal. Appl. 89 (1982), 442–461. Zbl 0493.39002, MR 0677740, 10.1016/0022-247X(82)90112-3 |
Reference:
|
[17] H. Weyl: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Functionen.Math. Ann. 68 (1910), 222–269. |
. |