Previous |  Up |  Next

Article

Title: Lacunary strong $(A_\sigma, p)$-convergence (English)
Author: Bilgin, Tunay
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 691-697
Summary lang: English
.
Category: math
.
Summary: The definition of lacunary strongly convergence is extended to the definition of lacunary strong $(A_{\sigma }, p)$-convergence with respect to invariant mean when $A$ is an infinite matrix and $p = (p_i)$ is a strictly positive sequence. We study some properties and inclusion relations. (English)
Keyword: lacunary sequence
Keyword: invariant convergence
Keyword: infinite matrix
MSC: 40A05
MSC: 40F05
idZBL: Zbl 1081.40001
idMR: MR2153093
.
Date available: 2009-09-24T11:26:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128013
.
Reference: [1] S. Banach: Theorie des operation lineaires., Warszava, 1932.
Reference: [2] T. Bilgin: Strong $A_{\sigma }$-summability defined by a modulus.J.  Ist. Univ. Sci. 53 (1996), 89–95. MR 1421245
Reference: [3] T.  Bilgin: Lacunary strong $A$-convergence with respect to a modulus.Studia Univ. Babeş-Bolyai Math. 46 (2001), 39–46. Zbl 1027.40001, MR 1989712
Reference: [4] G. Das and S. K. Mishra: Sublinear functional and a class of conservative matrices.J.  Orissa Math. 20 (1989), 64–67.
Reference: [5] G. Das and B. K. Patel: Lacunary distribution of sequences.Indian J.  Pure Appl. Math. 20 (1989), 64–74. MR 0977401
Reference: [6] A. R Freedman, J. J. Sember and M. Raphed: Some Cesaro-type summability spaces.Proc. London Math. Soc. 37 (1978), 508–520. MR 0512023
Reference: [7] G. G. Lorentz: A contribution to the theory of divergent sequences.Acta Math. 80 (1980), 167–190. MR 0027868
Reference: [8] Mursaleen: Matrix transformations between some new sequence spaces.Houston J.  Math. 4 (1983), 505–509. Zbl 0542.40003, MR 0732242
Reference: [9] E. Öztürk and T.  Bilgin: Strongly summable sequence spaces defined by a modulus.Indian J.  Pure Appl. Math. 25 (1994), 621–625. MR 1285224
Reference: [10] S. Pehlivan and B. Fisher: Lacunary strong convergence with respect to a sequence of modulus functions.Comment. Math. Univ. Carolin. 36 (1995), 69–76. MR 1334415
Reference: [11] E. Savaş: Lacunary strong $\sigma $-convergence.Indian J.  Pure Appl. Math. 21 (1990), 359–365. MR 1050848
Reference: [12] P. Scheafer: Infinite matrices and invariant meant.Proc. Amer. Math. Soc. 36 (1972), 104–110. MR 0306763, 10.1090/S0002-9939-1972-0306763-0
.

Files

Files Size Format View
CzechMathJ_55-2005-3_11.pdf 310.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo