[1] S. Banach: Theorie des operation lineaires. Warszava, 1932.
[2] T. Bilgin:
Strong $A_{\sigma }$-summability defined by a modulus. J. Ist. Univ. Sci. 53 (1996), 89–95.
MR 1421245
[3] T. Bilgin:
Lacunary strong $A$-convergence with respect to a modulus. Studia Univ. Babeş-Bolyai Math. 46 (2001), 39–46.
MR 1989712 |
Zbl 1027.40001
[4] G. Das and S. K. Mishra: Sublinear functional and a class of conservative matrices. J. Orissa Math. 20 (1989), 64–67.
[5] G. Das and B. K. Patel:
Lacunary distribution of sequences. Indian J. Pure Appl. Math. 20 (1989), 64–74.
MR 0977401
[6] A. R Freedman, J. J. Sember and M. Raphed:
Some Cesaro-type summability spaces. Proc. London Math. Soc. 37 (1978), 508–520.
MR 0512023
[7] G. G. Lorentz:
A contribution to the theory of divergent sequences. Acta Math. 80 (1980), 167–190.
MR 0027868
[8] Mursaleen:
Matrix transformations between some new sequence spaces. Houston J. Math. 4 (1983), 505–509.
MR 0732242 |
Zbl 0542.40003
[9] E. Öztürk and T. Bilgin:
Strongly summable sequence spaces defined by a modulus. Indian J. Pure Appl. Math. 25 (1994), 621–625.
MR 1285224
[10] S. Pehlivan and B. Fisher:
Lacunary strong convergence with respect to a sequence of modulus functions. Comment. Math. Univ. Carolin. 36 (1995), 69–76.
MR 1334415
[11] E. Savaş:
Lacunary strong $\sigma $-convergence. Indian J. Pure Appl. Math. 21 (1990), 359–365.
MR 1050848