Previous |  Up |  Next

Article

Keywords:
lacunary sequence; invariant convergence; infinite matrix
Summary:
The definition of lacunary strongly convergence is extended to the definition of lacunary strong $(A_{\sigma }, p)$-convergence with respect to invariant mean when $A$ is an infinite matrix and $p = (p_i)$ is a strictly positive sequence. We study some properties and inclusion relations.
References:
[1] S. Banach: Theorie des operation lineaires. Warszava, 1932.
[2] T. Bilgin: Strong $A_{\sigma }$-summability defined by a modulus. J.  Ist. Univ. Sci. 53 (1996), 89–95. MR 1421245
[3] T.  Bilgin: Lacunary strong $A$-convergence with respect to a modulus. Studia Univ. Babeş-Bolyai Math. 46 (2001), 39–46. MR 1989712 | Zbl 1027.40001
[4] G. Das and S. K. Mishra: Sublinear functional and a class of conservative matrices. J.  Orissa Math. 20 (1989), 64–67.
[5] G. Das and B. K. Patel: Lacunary distribution of sequences. Indian J.  Pure Appl. Math. 20 (1989), 64–74. MR 0977401
[6] A. R Freedman, J. J. Sember and M. Raphed: Some Cesaro-type summability spaces. Proc. London Math. Soc. 37 (1978), 508–520. MR 0512023
[7] G. G. Lorentz: A contribution to the theory of divergent sequences. Acta Math. 80 (1980), 167–190. MR 0027868
[8] Mursaleen: Matrix transformations between some new sequence spaces. Houston J.  Math. 4 (1983), 505–509. MR 0732242 | Zbl 0542.40003
[9] E. Öztürk and T.  Bilgin: Strongly summable sequence spaces defined by a modulus. Indian J.  Pure Appl. Math. 25 (1994), 621–625. MR 1285224
[10] S. Pehlivan and B. Fisher: Lacunary strong convergence with respect to a sequence of modulus functions. Comment. Math. Univ. Carolin. 36 (1995), 69–76. MR 1334415
[11] E. Savaş: Lacunary strong $\sigma $-convergence. Indian J.  Pure Appl. Math. 21 (1990), 359–365. MR 1050848
[12] P. Scheafer: Infinite matrices and invariant meant. Proc. Amer. Math. Soc. 36 (1972), 104–110. DOI 10.1090/S0002-9939-1972-0306763-0 | MR 0306763
Partner of
EuDML logo