Previous |  Up |  Next

Article

Title: Some oscillation theorems for second order differential equations (English)
Author: Lee, Chung-Fen
Author: Yeh, Cheh-Chih
Author: Gau, Chuen-Yu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 4
Year: 2005
Pages: 845-861
Summary lang: English
.
Category: math
.
Summary: In this paper we establish some oscillation or nonoscillation criteria for the second order half-linear differential equation \[ (r(t)\Phi (u^{\prime }(t)))^{\prime }+c(t)\Phi (u(t))=0, \] where (i) $r,c\in C([t_{0}, \infty )$, $\mathbb{R}:=(-\infty , \infty ))$ and $r(t)>0$ on $[t_{0},\infty )$ for some $t_{0}\ge 0$; (ii) $\Phi (u)=|u|^{p-2}u$ for some fixed number $p> 1$. We also generalize some results of Hille-Wintner, Leighton and Willet. (English)
Keyword: oscillatory
Keyword: nonoscillatory
Keyword: Riccati differential equation
Keyword: Sturm Comparison Theorem
MSC: 34C10
MSC: 34C15
idZBL: Zbl 1081.34031
idMR: MR2184367
.
Date available: 2009-09-24T11:28:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128028
.
Reference: [1] W. J.  Coles: A simple proof of a well-known oscillation theorem.Proc. Amer. Math. Soc. 19 (1968), 507. Zbl 0155.12802, MR 0223644
Reference: [2] Á.  Elbert: A half-linear second order differential equation.Colloquia Math. Soc.  J. Bolyai 30: Qualitivative Theorem of Differential Equations, Szeged, 1979, pp. 153–180. MR 0680591
Reference: [3] A. M.  Fink and D. F. St.  Mary: A generalized Sturm comparison theorem and oscillatory coefficients.Monatsh. Math. 73 (1969), 207–212. MR 0244561, 10.1007/BF01300536
Reference: [4] B. J.  Harris: On the oscillation of solutions of linear differential equations.Mathematika 31 (1984), 214–226. Zbl 0574.34015, MR 0804196, 10.1112/S0025579300012432
Reference: [5] E.  Hille: Non-oscillation theorems.Trans. Amer. Math. Soc. 64 (1948), 234–252. Zbl 0031.35402, MR 0027925, 10.1090/S0002-9947-1948-0027925-7
Reference: [6] A.  Kneser: Untersuchungen über die reelen Nullstellen der Integrale linearer Differentialgleichungen.Math. Ann. 42 (1893), 409–435. MR 1510784, 10.1007/BF01444165
Reference: [7] M. K.  Kwong and A.  Zettl: Integral inequalities and second order linear oscillation.J.  Diff. Equations 45 (1982), 16–33. MR 0662484, 10.1016/0022-0396(82)90052-3
Reference: [8] W.  Leighton: The detection of the oscillation of solutions of a second order linear differential equation.Duke J.  Math. 17 (1950), 57–62. Zbl 0036.06101, MR 0032065, 10.1215/S0012-7094-50-01707-8
Reference: [9] W.  Leighton: Comparison theorems for linear differential equations of second order.Proc. Amer. Math. Soc. 13 (1962), 603–610. Zbl 0118.08202, MR 0140759, 10.1090/S0002-9939-1962-0140759-0
Reference: [10] H. J.  Li and C. C.  Yeh: Sturmian comparison theorem for half-linear second order differential equations.Proc. Roy. Soc. Edin. 125A (1995), 1193–1204. MR 1362999
Reference: [11] H.  J.  Li and C. C.  Yeh: On the nonoscillatory behavior of solutions of a second order linear differential equation.Math. Nachr. 182 (1996), 295–315. MR 1419898, 10.1002/mana.19961820113
Reference: [12] J. D.  Mirzov: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems.J.  Math. Anal. Appl. 53 (1976), 418–425. Zbl 0327.34027, MR 0402184, 10.1016/0022-247X(76)90120-7
Reference: [13] R. A.  Moore: The behavior of solutions of a linear differential equation of second order.Pacific J.  Math. 5 (1955), 125–145. MR 0068690, 10.2140/pjm.1955.5.125
Reference: [14] C.  Sturm: Sur les équations différentielles linéaires du second order.J.  Math. Pures Appl. 1 (1836), 106–186.
Reference: [15] C.  Swanson: Comparison and Oscillation Theory of Linear Differential Equations.Academic Press, New York-London, 1968. Zbl 0191.09904, MR 0463570
Reference: [16] C. T.  Taam: Nonoscillatory differential equations.Duke Math.  J. 19 (1952), 493–497. MR 0051994, 10.1215/S0012-7094-52-01951-0
Reference: [17] D.  Willett: On the oscillatory behavior of the solutions of second order linear differential equations.Ann. Polon. Math. 21 (1969), 175–194. Zbl 0174.13701, MR 0249723, 10.4064/ap-21-2-175-194
Reference: [18] A.  Wintner: On the comparison theorem of Kneser-Hille.Math. Scand. 5 (1957), 255–260. Zbl 0080.29801, MR 0096867, 10.7146/math.scand.a-10502
Reference: [19] D.  Willett: Classification of second order linear differential equations with respect to oscillation.Adv. Math. 3 (1969), 594–623. Zbl 0188.40101, MR 0280800, 10.1016/0001-8708(69)90011-5
.

Files

Files Size Format View
CzechMathJ_55-2005-4_3.pdf 359.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo