Title:
|
Extremal solutions and strong relaxation for second order multivalued boundary value problems (English) |
Author:
|
Gasiński, Leszek |
Author:
|
Papageorgiou, Nikolaos S. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
827-844 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study semilinear second order differential inclusions involving a multivalued maximal monotone operator. Using notions and techniques from the nonlinear operator theory and from multivalued analysis, we obtain “extremal” solutions and we prove a strong relaxation theorem. (English) |
Keyword:
|
maximal monotone operator |
Keyword:
|
pseudomonotone operator |
Keyword:
|
Hartman condition |
Keyword:
|
convex and nonconvex problems |
Keyword:
|
extremal solutions |
Keyword:
|
strong relaxation |
MSC:
|
34A60 |
MSC:
|
34B15 |
idZBL:
|
Zbl 1081.34012 |
idMR:
|
MR2184366 |
. |
Date available:
|
2009-09-24T11:28:11Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128027 |
. |
Reference:
|
[1] L. Boccardo, P. Drábek, D. Giachetti, and M. Kučera: Generalizations of Fredholm alternative for nonlinear differential operators.Nonlin. Anal. 10 (1986), 1083–1103. MR 0857742, 10.1016/0362-546X(86)90091-X |
Reference:
|
[2] H. Dang, S. F. Oppenheimer: Existence and uniqueness results for some nonlinear boundary value problems.J. Math. Anal. Appl. 198 (1996), 35–48. MR 1373525, 10.1006/jmaa.1996.0066 |
Reference:
|
[3] F. S. De Blasi, L. Górniewicz, and G. Pianigiani: Topological degree and periodic solutions of differential inclusions.Nonlin. Anal. 37 (1999), 217–245. MR 1689752, 10.1016/S0362-546X(98)00044-3 |
Reference:
|
[4] F. S. De Blasi, G. Pianigiani: The Baire category method in existence problem for a class of multivalued equations with nonconvex right hand side.Funkcialaj Ekvacioj 28 (1985), 139–156. MR 0816823 |
Reference:
|
[5] F. S. De Blasi, G. Pianigiani: Nonconvex valued differential inclusions in Banach spaces.J. Math. Anal. Appl. 157 (1991), 469–494. MR 1112329, 10.1016/0022-247X(91)90101-5 |
Reference:
|
[6] F. S. De Blasi, G. Pianigiani: On the density of extremal solutions of differential inclusions.Annales Polon. Math. LVI (1992), 133–142. MR 1159984 |
Reference:
|
[7] F. S. De Blasi, G. Pianigiani: Topological properties of nonconvex differential inclusions.Nonlin. Anal. 20 (1993), 871–894. MR 1214750, 10.1016/0362-546X(93)90075-4 |
Reference:
|
[8] C. De Coster: Pairs of positive solutions for the one-dimensional $p$-Laplacian.Nonlin. Anal. 23 (1994), 669–681. Zbl 0813.34021, MR 1297285, 10.1016/0362-546X(94)90245-3 |
Reference:
|
[9] L. Erbe, W. Krawcewicz: Nonlinear boundary value problems for differential inclusions $y^{\prime \prime }\in F(t,y,y^{\prime })$.Annales Polon. Math. LIV (1991), 195–226. MR 1114171 |
Reference:
|
[10] M. Frigon: Theoremes d’existence des solutions d’inclusion differentielles.In: NATO ASI Series, Section C, 472, Kluwer, Dordrecht, 1995, pp. 51–87. MR 1368670 |
Reference:
|
[11] R. Gaines, J. Mawhin: Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Math. 568.Springer-Verlag, New York, 1977. MR 0637067 |
Reference:
|
[12] L. Gasiński, N. S. Papageorgiou: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems.Chapman and Hall/CRC Press, Boca Raton, 2005. MR 2092433 |
Reference:
|
[13] Z. Guo: Boundary value problems of a class of quasilinear ordinary differential equations.Diff. Integ. Eqns. 6 (1993), 705–719. Zbl 0784.34018 |
Reference:
|
[14] N. Halidias, N. S. Papageorgiou: Existence and relaxation results for nonlinear second order multivalued boundary value problems in $\mathbb{R}^N$.J. Differ. Equations 147 (1998), 123–154. MR 1632661, 10.1006/jdeq.1998.3439 |
Reference:
|
[15] P. Hartman: On boundary value problems for systems of ordinary nonlinear second order differential equations.Trans. AMS 96 (1960), 493–509. Zbl 0098.06101, MR 0124553, 10.1090/S0002-9947-1960-0124553-5 |
Reference:
|
[16] P. Hartman: Ordinary Differential Equations.Willey, New York, 1964. Zbl 0125.32102, MR 0171038 |
Reference:
|
[17] S. Hu, D. Kandilakis, N. S. Papageorgiou: Periodic solutions for nonconvex differential inclusions.Proc. AMS 127 (1999), 89–94. MR 1451808 |
Reference:
|
[18] S. Hu, N. S. Papageorgiou: On the existence of periodic solutions for nonconvex-valued differential inclusions in $\mathbb{R}^N$.Proc. AMS 123 (1995), 3043–3050. MR 1301503 |
Reference:
|
[19] S. Hu, N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume I: Theory.Kluwer, Dordrecht, 1997. MR 1485775 |
Reference:
|
[20] S. Hu, N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume II: Applications.Kluwer, Dordrecht, 2000. MR 1741926 |
Reference:
|
[21] D. Kandilakis, N. S. Papageorgiou: Existence theorem for nonlinear boundary value problems for second order differential inclusions.J. Differ. Equations 132 (1996), 107–125. MR 1418502, 10.1006/jdeq.1996.0173 |
Reference:
|
[22] D. Kandilakis, N. S. Papageorgiou: Neumann problem for a class of quasilinear differential equations.Atti. Sem. Mat. Fisico Univ. di Modena 48 (2000), 163–177. MR 1767378 |
Reference:
|
[23] H. W. Knobloch: On the existence of periodic solutions for second order vector differential equations.J. Differ. Equations 9 (1971), 67–85. Zbl 0211.11801, MR 0277824 |
Reference:
|
[24] M. Marcus, V. Mizel: Absolute continuity on tracks and mappings of Sobolev spaces.Arch. Rational Mech. Anal. 45 (1972), 294–320. MR 0338765, 10.1007/BF00251378 |
Reference:
|
[25] J. Mawhin: Some boundary value problems for Hartman-type perturbations of the ordinary vector $p$-Laplacian.Nonlin. Anal. 40 (2000), 497–503. Zbl 0959.34014, MR 1768905, 10.1016/S0362-546X(00)85028-2 |
. |