Previous |  Up |  Next

Article

Title: Extremal solutions and strong relaxation for second order multivalued boundary value problems (English)
Author: Gasiński, Leszek
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 4
Year: 2005
Pages: 827-844
Summary lang: English
.
Category: math
.
Summary: In this paper we study semilinear second order differential inclusions involving a multivalued maximal monotone operator. Using notions and techniques from the nonlinear operator theory and from multivalued analysis, we obtain “extremal” solutions and we prove a strong relaxation theorem. (English)
Keyword: maximal monotone operator
Keyword: pseudomonotone operator
Keyword: Hartman condition
Keyword: convex and nonconvex problems
Keyword: extremal solutions
Keyword: strong relaxation
MSC: 34A60
MSC: 34B15
idZBL: Zbl 1081.34012
idMR: MR2184366
.
Date available: 2009-09-24T11:28:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128027
.
Reference: [1] L. Boccardo, P. Drábek, D. Giachetti, and M. Kučera: Generalizations of Fredholm alternative for nonlinear differential operators.Nonlin. Anal. 10 (1986), 1083–1103. MR 0857742, 10.1016/0362-546X(86)90091-X
Reference: [2] H. Dang, S. F. Oppenheimer: Existence and uniqueness results for some nonlinear boundary value problems.J.  Math. Anal. Appl. 198 (1996), 35–48. MR 1373525, 10.1006/jmaa.1996.0066
Reference: [3] F. S.  De Blasi, L. Górniewicz, and G. Pianigiani: Topological degree and periodic solutions of differential inclusions.Nonlin. Anal. 37 (1999), 217–245. MR 1689752, 10.1016/S0362-546X(98)00044-3
Reference: [4] F. S. De Blasi, G. Pianigiani: The Baire category method in existence problem for a class of multivalued equations with nonconvex right hand side.Funkcialaj Ekvacioj 28 (1985), 139–156. MR 0816823
Reference: [5] F. S. De Blasi, G. Pianigiani: Nonconvex valued differential inclusions in Banach spaces.J.  Math. Anal. Appl. 157 (1991), 469–494. MR 1112329, 10.1016/0022-247X(91)90101-5
Reference: [6] F. S. De Blasi, G. Pianigiani: On the density of extremal solutions of differential inclusions.Annales Polon. Math.  LVI (1992), 133–142. MR 1159984
Reference: [7] F. S. De Blasi, G. Pianigiani: Topological properties of nonconvex differential inclusions.Nonlin. Anal. 20 (1993), 871–894. MR 1214750, 10.1016/0362-546X(93)90075-4
Reference: [8] C. De Coster: Pairs of positive solutions for the one-dimensional $p$-Laplacian.Nonlin. Anal. 23 (1994), 669–681. Zbl 0813.34021, MR 1297285, 10.1016/0362-546X(94)90245-3
Reference: [9] L. Erbe, W. Krawcewicz: Nonlinear boundary value problems for differential inclusions $y^{\prime \prime }\in F(t,y,y^{\prime })$.Annales Polon. Math.  LIV (1991), 195–226. MR 1114171
Reference: [10] M. Frigon: Theoremes d’existence des solutions d’inclusion differentielles.In: NATO ASI Series, Section C,  472, Kluwer, Dordrecht, 1995, pp. 51–87. MR 1368670
Reference: [11] R. Gaines, J. Mawhin: Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Math.  568.Springer-Verlag, New York, 1977. MR 0637067
Reference: [12] L. Gasiński, N. S.  Papageorgiou: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems.Chapman and Hall/CRC Press, Boca Raton, 2005. MR 2092433
Reference: [13] Z. Guo: Boundary value problems of a class of quasilinear ordinary differential equations.Diff. Integ. Eqns. 6 (1993), 705–719. Zbl 0784.34018
Reference: [14] N.  Halidias, N. S. Papageorgiou: Existence and relaxation results for nonlinear second order multivalued boundary value problems in  $\mathbb{R}^N$.J.  Differ. Equations 147 (1998), 123–154. MR 1632661, 10.1006/jdeq.1998.3439
Reference: [15] P. Hartman: On boundary value problems for systems of ordinary nonlinear second order differential equations.Trans. AMS 96 (1960), 493–509. Zbl 0098.06101, MR 0124553, 10.1090/S0002-9947-1960-0124553-5
Reference: [16] P. Hartman: Ordinary Differential Equations.Willey, New York, 1964. Zbl 0125.32102, MR 0171038
Reference: [17] S. Hu, D. Kandilakis, N. S. Papageorgiou: Periodic solutions for nonconvex differential inclusions.Proc. AMS 127 (1999), 89–94. MR 1451808
Reference: [18] S. Hu, N. S. Papageorgiou: On the existence of periodic solutions for nonconvex-valued differential inclusions in $\mathbb{R}^N$.Proc. AMS 123 (1995), 3043–3050. MR 1301503
Reference: [19] S. Hu, N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume  I: Theory.Kluwer, Dordrecht, 1997. MR 1485775
Reference: [20] S. Hu, N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume  II: Applications.Kluwer, Dordrecht, 2000. MR 1741926
Reference: [21] D. Kandilakis, N. S. Papageorgiou: Existence theorem for nonlinear boundary value problems for second order differential inclusions.J.  Differ. Equations 132 (1996), 107–125. MR 1418502, 10.1006/jdeq.1996.0173
Reference: [22] D. Kandilakis, N. S. Papageorgiou: Neumann problem for a class of quasilinear differential equations.Atti. Sem. Mat. Fisico Univ. di Modena 48 (2000), 163–177. MR 1767378
Reference: [23] H. W. Knobloch: On the existence of periodic solutions for second order vector differential equations.J.  Differ. Equations 9 (1971), 67–85. Zbl 0211.11801, MR 0277824
Reference: [24] M. Marcus, V. Mizel: Absolute continuity on tracks and mappings of Sobolev spaces.Arch. Rational Mech. Anal. 45 (1972), 294–320. MR 0338765, 10.1007/BF00251378
Reference: [25] J. Mawhin: Some boundary value problems for Hartman-type perturbations of the ordinary vector $p$-Laplacian.Nonlin. Anal. 40 (2000), 497–503. Zbl 0959.34014, MR 1768905, 10.1016/S0362-546X(00)85028-2
.

Files

Files Size Format View
CzechMathJ_55-2005-4_2.pdf 409.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo