Title:
|
Problems concerning $n$-weak amenability of a Banach algebra (English) |
Author:
|
Medghalchi, Alireza |
Author:
|
Yazdanpanah, Taher |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
863-876 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we extend the notion of $n$-weak amenability of a Banach algebra $\mathcal A$ when $n\in \mathbb{N}$. Technical calculations show that when $\mathcal A$ is Arens regular or an ideal in $\mathcal A^{**}$, then $\mathcal A^*$ is an $\mathcal A^{(2n)}$-module and this idea leads to a number of interesting results on Banach algebras. We then extend the concept of $n$-weak amenability to $n \in \mathbb{Z}$. (English) |
Keyword:
|
Banach algebra |
Keyword:
|
weakly amenable |
Keyword:
|
Arens regular |
Keyword:
|
$n$-weakly amenable |
MSC:
|
46H20 |
MSC:
|
46H40 |
idZBL:
|
Zbl 1081.46031 |
idMR:
|
MR2184368 |
. |
Date available:
|
2009-09-24T11:28:25Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128029 |
. |
Reference:
|
[1] W. G. Bade, P. G. Curtis and H. G. Dales: Amenability and weak amenability for Beurling and Lipschitz algebra.Proc. London Math. Soc. 55 (1987), 359–377. MR 0896225 |
Reference:
|
[2] H. G. Dales, F. Ghahramanim and N. Gronbaek: Derivations into iterated duals of Banach algebras.Studia Math. 128 (1998), 19–54. MR 1489459 |
Reference:
|
[3] H. G. Dales, A. Rodriguez-Palacios and M. V. Valasco: The second transpose of a derivation.J. London Math. Soc. 64 (2001), 707–721. MR 1865558, 10.1112/S0024610701002496 |
Reference:
|
[4] M. Despic and F. Ghahramani: Weak amenability of group algebras of locally compact groups.Canad. Math. Bull. 37 (1994), 165–167. MR 1275699, 10.4153/CMB-1994-024-4 |
Reference:
|
[5] J. Duncan and Hosseiniun: The second dual of a Banach algebra.Proc. Roy. Soc. Edinburgh 84A (1978), 309–325. MR 0559675 |
Reference:
|
[6] N. Gronbaek: Weak amenability of group algebras.Bull. London Math. Soc. 23 (1991), 231–284. MR 1123339 |
Reference:
|
[7] U. Haagerup: All nuclear $C^*$-algebras are amenable.Invent. Math. 74 (1983), 305–319. Zbl 0529.46041, MR 0723220, 10.1007/BF01394319 |
Reference:
|
[8] B. E. Johnson: Cohomology in Banach Algebras.Mem. Amer. Math. Soc. 127 (1972). Zbl 0256.18014, MR 0374934 |
Reference:
|
[9] B. E. Johnson: Weak amenability of group algebras.Bull. Lodon Math. Soc. 23 (1991), 281–284. Zbl 0757.43002, MR 1123339, 10.1112/blms/23.3.281 |
Reference:
|
[10] T. W. Palmer: Banach Algebra, the General Theory of $*$-algebra. Vol. 1: Algebra and Banach Algebras.Cambridge University Press, Cambridge, 1994. MR 1270014 |
. |