Previous |  Up |  Next

Article

Title: Problems concerning $n$-weak amenability of a Banach algebra (English)
Author: Medghalchi, Alireza
Author: Yazdanpanah, Taher
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 4
Year: 2005
Pages: 863-876
Summary lang: English
.
Category: math
.
Summary: In this paper we extend the notion of $n$-weak amenability of a Banach algebra $\mathcal A$ when $n\in \mathbb{N}$. Technical calculations show that when $\mathcal A$ is Arens regular or an ideal in $\mathcal A^{**}$, then $\mathcal A^*$ is an $\mathcal A^{(2n)}$-module and this idea leads to a number of interesting results on Banach algebras. We then extend the concept of $n$-weak amenability to $n \in \mathbb{Z}$. (English)
Keyword: Banach algebra
Keyword: weakly amenable
Keyword: Arens regular
Keyword: $n$-weakly amenable
MSC: 46H20
MSC: 46H40
idZBL: Zbl 1081.46031
idMR: MR2184368
.
Date available: 2009-09-24T11:28:25Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128029
.
Reference: [1] W. G. Bade, P. G. Curtis and H. G. Dales: Amenability and weak amenability for Beurling and Lipschitz algebra.Proc. London Math. Soc. 55 (1987), 359–377. MR 0896225
Reference: [2] H. G.  Dales, F.  Ghahramanim and N.  Gronbaek: Derivations into iterated duals of Banach algebras.Studia Math. 128 (1998), 19–54. MR 1489459
Reference: [3] H. G.  Dales, A.  Rodriguez-Palacios and M. V. Valasco: The second transpose of a derivation.J.  London Math. Soc. 64 (2001), 707–721. MR 1865558, 10.1112/S0024610701002496
Reference: [4] M.  Despic and F.  Ghahramani: Weak amenability of group algebras of locally compact groups.Canad. Math. Bull. 37 (1994), 165–167. MR 1275699, 10.4153/CMB-1994-024-4
Reference: [5] J.  Duncan and Hosseiniun: The second dual of a Banach algebra.Proc. Roy. Soc. Edinburgh 84A (1978), 309–325. MR 0559675
Reference: [6] N.  Gronbaek: Weak amenability of group algebras.Bull. London Math. Soc. 23 (1991), 231–284. MR 1123339
Reference: [7] U.  Haagerup: All nuclear $C^*$-algebras are amenable.Invent. Math. 74 (1983), 305–319. Zbl 0529.46041, MR 0723220, 10.1007/BF01394319
Reference: [8] B. E.  Johnson: Cohomology in Banach Algebras.Mem. Amer. Math. Soc. 127 (1972). Zbl 0256.18014, MR 0374934
Reference: [9] B. E.  Johnson: Weak amenability of group algebras.Bull. Lodon Math. Soc. 23 (1991), 281–284. Zbl 0757.43002, MR 1123339, 10.1112/blms/23.3.281
Reference: [10] T. W.  Palmer: Banach Algebra, the General Theory of $*$-algebra. Vol.  1: Algebra and Banach Algebras.Cambridge University Press, Cambridge, 1994. MR 1270014
.

Files

Files Size Format View
CzechMathJ_55-2005-4_4.pdf 348.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo