Previous |  Up |  Next

Article

Keywords:
AANR; absolute retract; arc component; arc-like; continuum; decomposable; dendroid; hereditarily unicoherent; retraction; terminal continuum; tree-like
Summary:
Continua that are approximative absolute neighborhood retracts (AANR’s) are characterized as absolute terminal retracts, i.e., retracts of continua in which they are embedded as terminal subcontinua. This implies that any AANR continuum has a dense arc component, and that any ANR continuum is an absolute terminal retract. It is proved that each absolute retract for any of the classes of: tree-like continua, $\lambda $-dendroids, dendroids, arc-like continua and arc-like $\lambda $-dendroids is an approximative absolute retract (so it is an AANR). Consequently, all these continua have the fixed point property, which is a new result for absolute retracts for tree-like continua. Related questions are asked.
References:
[1] J. M.  Aarts and P.  van Emde Boas: Continua as remainders in compact extensions. Nieuw Arch. Wisk. 15 (1967), 34–37. MR 0214033
[2] D. P.  Bellamy: A tree-like continuum without the fixed point property. Houston J.  Math. 6 (1980), 1–13. MR 0575909 | Zbl 0473.54020
[3] K.  Borsuk: A theorem on fixed points. Bull. Acad. Polon. Sci., Cl.  III 2 (1954), 17–20. MR 0064393 | Zbl 0057.39103
[4] K.  Borsuk: Theory of Retracts. PWN, Warszawa, 1967. MR 0216473 | Zbl 0153.52905
[5] J. J.  Charatonik, W. J.  Charatonik and J. R.  Prajs: Hereditarily unicoherent continua and their absolute retracts. Rocky Mountain J.  Math. 34 (2004), 83–110. DOI 10.1216/rmjm/1181069893 | MR 2061119
[6] J. J.  Charatonik, W. J.  Charatonik and J. R.  Prajs: Arc property of Kelley and absolute retracts for hereditarily unicoherent continua. Colloq. Math 97 (2003), 49–65. DOI 10.4064/cm97-1-6 | MR 2010542
[7] J. J.  Charatonik and J. R.  Prajs: Several old and new problems in continuum theory. Topology Proc. 25 (Summer 2000), 31–41. MR 1925676
[8] M.  H.  Clapp: On a generalization of absolute neighborhood retracts. Fund. Math. 70 (1971), 117–130. MR 0286081 | Zbl 0231.54012
[9] J.  Dydak and J.  Segal: Shape Theory (Lecture Notes in Math. vol.  688). Springer-Verlag, Berlin-Heidelberg-New York, 1978. MR 0520227
[10] C. A.  Eberhart and J. B.  Fugate: Approximating continua from within. Fund. Math. 72 (1971), 223–231. MR 0296905
[11] J. B.  Fugate: Retracting fans onto finite fans. Fund. Math. 71 (1971), 113–125. MR 0296904 | Zbl 0214.49701
[12] J. B.  Fugate: Small retractions of smooth dendroids onto trees. Fund. Math. 71 (1971), 255–262. MR 0296906 | Zbl 0226.54030
[13] A.  Gmurczyk: On approximative retracts. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 16 (1968), 9–14. MR 0227916 | Zbl 0153.53102
[14] A.  Granas: Fixed point theorems for approximative ANR-s. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 16 (1968), 15–19. MR 0227917
[15] C. L.  Hagopian: Fixed-point problems in continuum theory. Contemporary Math. 117 (1991), 79–86. DOI 10.1090/conm/117/1112805 | MR 1112805 | Zbl 0738.54011
[16] O. H.  Hamilton: A fixed point theorem for pseudo-arcs and certain other metric continua. Proc. Amer. Math. Soc. 2 (1951), 173–174. DOI 10.1090/S0002-9939-1951-0039993-2 | MR 0039993 | Zbl 0054.07003
[17] S. T.  Hu: Theory of Retracts. Wayne State University Press, Detroit, 1965. MR 0181977 | Zbl 0145.43003
[18] A.  Illanes and S. B.  Nadler, Jr.: Hyperspaces. M.  Dekker, New York-Basel, 1999. MR 1670250
[19] W. T.  Ingram: $C$-sets and mappings of continua. Topology Proc. 7 (1982), 83–90. MR 0696623 | Zbl 0517.54027
[20] T.  Maćkowiak: The condensation of singularities in arc-like continua. Houston J.  Math. 11 (1985), 535–558. MR 0837992
[21] T. Maćkowiak: Terminal continua and homogeneity. Fund. Math. 127 (1987), 177–186. MR 0917143
[22] T.  Maćkowiak and E. D.  Tymchatyn: Continuous mappings of continua  II. Dissertationes Math. (Rozprawy Mat.) 225 (1984), 1–57. MR 0739739
[23] R.  Mańka: Association and fixed points. Fund. Math. 91 (1976), 105–121. MR 0413062
[24] S.  Mardešić and J.  Segal: Shape Theory. North-Holland, Amsterdam-New York-Oxford, 1982. MR 0676973
[25] J.  van Mill: Infinite-Dimensional Topology. North-Holland, Amsterdam-New York-Oxford-Tokyo, 1989. MR 0977744 | Zbl 0663.57001
[26] S. B.  Nadler, Jr.: Continuum Theory. M.  Dekker, New York-Basel-Hong Kong, 1992. MR 1192552 | Zbl 0757.54009
[27] H.  Noguchi: A generalization of absolute neighborhood retracts. Kodai Math. Seminar Reports 1 (1953), 20–22. MR 0056279 | Zbl 0052.18803
[28] A. D.  Wallace: The position of $C$-sets in semigroups. Proc. Amer. Math. Soc. 6 (1955), 639–642. MR 0071709 | Zbl 0068.02403
Partner of
EuDML logo