Title:
|
On the underlying lower order bundle functors (English) |
Author:
|
Doupovec, Miroslav |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
901-916 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For every bundle functor we introduce the concept of subordinated functor. Then we describe subordinated functors for fiber product preserving functors defined on the category of fibered manifolds with $m$-dimensional bases and fibered manifold morphisms with local diffeomorphisms as base maps. In this case we also introduce the concept of the underlying functor. We show that there is an affine structure on fiber product preserving functors. (English) |
Keyword:
|
bundle functor |
Keyword:
|
Weil bundle |
Keyword:
|
natural transformation |
MSC:
|
58A05 |
MSC:
|
58A20 |
MSC:
|
58A32 |
idZBL:
|
Zbl 1081.58001 |
idMR:
|
MR2184371 |
. |
Date available:
|
2009-09-24T11:28:46Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128032 |
. |
Reference:
|
[1] M. Doupovec and I. Kolář: Iteration of fiber product preserving bundle functors.Monatsh. Math. 134 (2001), 39–50. MR 1872045, 10.1007/s006050170010 |
Reference:
|
[2] I. Kolář: Affine structure on Weil bundles.Nagoya Math. J. 158 (2000), 99–106. MR 1766571, 10.1017/S0027763000007339 |
Reference:
|
[3] I. Kolář: A general point of view to nonholonomic jet bundles.Cahiers Topo. Geom. Diff. Categoriques XLIV (2003), 149–160. MR 1985835 |
Reference:
|
[4] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry.Springer-Verlag, 1993. MR 1202431 |
Reference:
|
[5] I. Kolář and W. M. Mikulski: On the fiber product preserving bundle functors.Diff. Geom. Appl. 11 (1999), 105–115. MR 1712139, 10.1016/S0926-2245(99)00022-4 |
Reference:
|
[6] M. Kureš: On the simplicial structure of some Weil bundles.Rend. Circ. Mat. Palermo, Serie II, Suppl. 63 (2000), 131–140. MR 1758088 |
Reference:
|
[7] J. E. White: The Method of Iterated Tangents with Applications in Local Riemannian Geometry.Pitman Press, , 1982. Zbl 0478.58002, MR 0693620 |
. |