Previous |  Up |  Next

Article

Title: Affine completeness and lexicographic product decompositions of abelian lattice ordered groups (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 4
Year: 2005
Pages: 917-922
Summary lang: English
.
Category: math
.
Summary: In this paper it is proved that an abelian lattice ordered group which can be expressed as a nontrivial lexicographic product is never affine complete. (English)
Keyword: Abelian lattice ordered group
Keyword: lexicographic product decomposition
Keyword: affine completeness
MSC: 06F20
idZBL: Zbl 1081.06022
idMR: MR2184372
.
Date available: 2009-09-24T11:28:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128033
.
Reference: [1] L.  Fuchs: Partially Ordered Algebraic Systems.Pergamon Press, Oxford, 1963. Zbl 0137.02001, MR 0171864
Reference: [2] J.  Jakubík: Affine completeness of complete lattice ordered groups.Czechoslovak Math.  J. 45 (1995), 571–576. MR 1344522
Reference: [3] J.  Jakubík: On the affine completeness of lattice ordered groups.Czechoslovak Math.  J. 54 (2004), 423–429. MR 2059263, 10.1023/B:CMAJ.0000042381.83544.a7
Reference: [4] J.  Jakubík and M.  Csontóová: Affine completeness of projectable lattice ordered groups.Czechoslovak Math.  J. 48 (1998), 359–363. MR 1624264, 10.1023/A:1022849823068
Reference: [5] K.  Kaarli and A. F.  Pixley: Polynomial Completeness in Algebraic Systems.Chapman-Hall, London-New York-Washington, 2000. MR 1888967
.

Files

Files Size Format View
CzechMathJ_55-2005-4_8.pdf 276.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo