# Article

Full entry | PDF   (0.3 MB)
Keywords:
regular semigroup; sandwich set; congruence; natural order; compatibility; completely regular element or semigroup; cryptogroup
Summary:
Let $S$ be a regular semigroup and $E(S)$ be the set of its idempotents. We call the sets $S(e,f)f$ and $eS(e,f)$ one-sided sandwich sets and characterize them abstractly where $e,f \in E(S)$. For $a, a^{\prime } \in S$ such that $a=aa^{\prime }a$, $a^{\prime }=a^{\prime }aa^{\prime }$, we call $S(a)=S(a^{\prime }a, aa^{\prime })$ the sandwich set of $a$. We characterize regular semigroups $S$ in which all $S(e,f)$ (or all $S(a))$ are right zero semigroups (respectively are trivial) in several ways including weak versions of compatibility of the natural order. For every $a \in S$, we also define $E(a)$ as the set of all idempotets $e$ such that, for any congruence $\rho$ on $S$, $a \rho a^2$ implies that $a \rho e$. We study the restrictions on $S$ in order that $S(a)$ or $E(a)\cap D_{a^2}$ be trivial. For $\mathcal F \in \lbrace \mathcal S, \mathcal E\rbrace$, we define $\mathcal F$ on $S$ by $a \mathrel {\mathcal F}b$ if $F(a) \cap F (b)\ne \emptyset$. We establish for which $S$ are $\mathcal S$ or $\mathcal E$ congruences.
References:
[1] K. Auinger: Free objects in joins of strict inverse and completely simple semigroups. J. London Math. Soc. 45 (1992), 491–507. MR 1180258
[2] K. Auinger: The congruence lattice of a strict regular semigroup. J. Pure Appl. Algebra 81 (1992), 219–245. DOI 10.1016/0022-4049(92)90058-N | MR 1179099 | Zbl 0809.20054
[3] T. S. Blyth and M. G. Gomes: On the compatibility of the natural order on a regular semigroup. Proc. Royal Soc. Edinburgh A94 (1983), 79–84. MR 0700501
[4] J. M. Howie: An introduction to semigroup theory. Academic Press, London, 1976. MR 0466355 | Zbl 0355.20056
[5] G. Lallement: Congruences et équivalences de Green sur un demi-groupe régulier. C.R. Acad. Sci., Paris 262 (1966), 613–616. MR 0207872 | Zbl 0136.26603
[6] K. S. S. Nambooripad: Structure of regular semigroups. Mem. Amer. Math. Soc. 224 (1979). MR 0546362 | Zbl 0457.20051
[7] K. S. S. Nambooripad: The natural partial order on a regular semigroup. Proc. Edinburgh Math. Soc. 23 (1980), 249–260. MR 0620922 | Zbl 0459.20054
[8] M. Petrich: Introduction to semigroups. Merrill, Columbus, 1973. MR 0393206 | Zbl 0321.20037
[9] M. Petrich: Inverse semigroups. Wiley, New York, 1984. MR 0752899 | Zbl 0546.20053
[10] P. G. Trotter: Congruence extensions in regular semigroups. J. Algebra 137 (1991), 166–179. DOI 10.1016/0021-8693(91)90086-N | MR 1090216 | Zbl 0714.20053
[11] P. S. Venkatesan: Right (left) inverse semigroups. J. Algebra 31 (1974), 209–217. DOI 10.1016/0021-8693(74)90064-7 | MR 0346078 | Zbl 0301.20058

Partner of