Previous |  Up |  Next

Article

Title: On sandwich sets and congruences on regular semigroups (English)
Author: Petrich, Mario
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 1
Year: 2006
Pages: 27-46
Summary lang: English
.
Category: math
.
Summary: Let $S$ be a regular semigroup and $E(S)$ be the set of its idempotents. We call the sets $S(e,f)f$ and $eS(e,f)$ one-sided sandwich sets and characterize them abstractly where $e,f \in E(S)$. For $a, a^{\prime } \in S$ such that $a=aa^{\prime }a$, $a^{\prime }=a^{\prime }aa^{\prime }$, we call $S(a)=S(a^{\prime }a, aa^{\prime })$ the sandwich set of $a$. We characterize regular semigroups $S$ in which all $S(e,f)$ (or all $S(a))$ are right zero semigroups (respectively are trivial) in several ways including weak versions of compatibility of the natural order. For every $a \in S$, we also define $E(a)$ as the set of all idempotets $e$ such that, for any congruence $\rho $ on $S$, $a \rho a^2$ implies that $a \rho e$. We study the restrictions on $S$ in order that $S(a)$ or $E(a)\cap D_{a^2}$ be trivial. For $\mathcal F \in \lbrace \mathcal S, \mathcal E\rbrace $, we define $\mathcal F$ on $S$ by $a \mathrel {\mathcal F}b$ if $F(a) \cap F (b)\ne \emptyset $. We establish for which $S$ are $\mathcal S$ or $\mathcal E$ congruences. (English)
Keyword: regular semigroup
Keyword: sandwich set
Keyword: congruence
Keyword: natural order
Keyword: compatibility
Keyword: completely regular element or semigroup
Keyword: cryptogroup
MSC: 20M10
MSC: 20M17
idZBL: Zbl 1157.20035
idMR: MR2206285
.
Date available: 2009-09-24T11:31:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128052
.
Reference: [1] K. Auinger: Free objects in joins of strict inverse and completely simple semigroups.J. London Math. Soc. 45 (1992), 491–507. MR 1180258
Reference: [2] K. Auinger: The congruence lattice of a strict regular semigroup.J. Pure Appl. Algebra 81 (1992), 219–245. Zbl 0809.20054, MR 1179099, 10.1016/0022-4049(92)90058-N
Reference: [3] T. S. Blyth and M. G. Gomes: On the compatibility of the natural order on a regular semigroup.Proc. Royal Soc. Edinburgh A94 (1983), 79–84. MR 0700501
Reference: [4] J. M. Howie: An introduction to semigroup theory.Academic Press, London, 1976. Zbl 0355.20056, MR 0466355
Reference: [5] G. Lallement: Congruences et équivalences de Green sur un demi-groupe régulier.C.R. Acad. Sci., Paris 262 (1966), 613–616. Zbl 0136.26603, MR 0207872
Reference: [6] K. S. S. Nambooripad: Structure of regular semigroups.Mem. Amer. Math. Soc. 224 (1979). Zbl 0457.20051, MR 0546362
Reference: [7] K. S. S. Nambooripad: The natural partial order on a regular semigroup.Proc. Edinburgh Math. Soc. 23 (1980), 249–260. Zbl 0459.20054, MR 0620922
Reference: [8] M. Petrich: Introduction to semigroups.Merrill, Columbus, 1973. Zbl 0321.20037, MR 0393206
Reference: [9] M. Petrich: Inverse semigroups.Wiley, New York, 1984. Zbl 0546.20053, MR 0752899
Reference: [10] P. G. Trotter: Congruence extensions in regular semigroups.J. Algebra 137 (1991), 166–179. Zbl 0714.20053, MR 1090216, 10.1016/0021-8693(91)90086-N
Reference: [11] P. S. Venkatesan: Right (left) inverse semigroups.J. Algebra 31 (1974), 209–217. Zbl 0301.20058, MR 0346078, 10.1016/0021-8693(74)90064-7
.

Files

Files Size Format View
CzechMathJ_56-2006-1_4.pdf 376.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo