Previous |  Up |  Next

Article

Title: Holland’s theorem for pseudo-effect algebras (English)
Author: Dvurečenskij, Anatolij
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 1
Year: 2006
Pages: 47-59
Summary lang: English
.
Category: math
.
Summary: We give two variations of the Holland representation theorem for $\ell $-groups and of its generalization of Glass for directed interpolation po-groups as groups of automorphisms of a linearly ordered set or of an antilattice, respectively. We show that every pseudo-effect algebra with some kind of the Riesz decomposition property as well as any pseudo $MV$-algebra can be represented as a pseudo-effect algebra or as a pseudo $MV$-algebra of automorphisms of some antilattice or of some linearly ordered set. (English)
Keyword: pseudo-effect algebra
Keyword: pseudo $MV$-algebra
Keyword: antilattice
Keyword: prime ideal
Keyword: automorphism
Keyword: unital po-group
Keyword: unital $\ell $-group
MSC: 03B50
MSC: 03G12
MSC: 06F20
idZBL: Zbl 1164.06329
idMR: MR2206286
.
Date available: 2009-09-24T11:31:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128053
.
Reference: [1] A.  Dvurečenskij: Pseudo $MV$-algebras are intervals in $\ell $-groups.J.  Austral. Math. Soc. 72 (2002), 427–445. MR 1902211, 10.1017/S1446788700036806
Reference: [2] A.  Dvurečenskij: Ideals of pseudo-effect algebras and their applications.Tatra Mt. Math. Publ. 27 (2003), 45–65. MR 2026641
Reference: [3] A.  Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 2000. MR 1861369
Reference: [4] A.  Dvurečenskij, T. Vetterlein: Pseudoeffect algebras. I.  Basic properties.Inter. J.  Theor. Phys. 40 (2001), 685–701. MR 1831592
Reference: [5] A.  Dvurečenskij, T. Vetterlein: Pseudoeffect algebras. II.  Group representations.Inter. J.  Theor. Phys. 40 (2001), 703–726. MR 1831593
Reference: [6] G.  Georgescu, A.  Iorgulescu: Pseudo-$MV$ algebras.Multi. Val. Logic 6 (2001), 95–135. MR 1817439
Reference: [7] A. M. W.  Glass: Polars and their applications in directed interpolation groups.Trans. Amer. Math. Soc. 166 (1972), 1–25. Zbl 0235.06004, MR 0295991, 10.1090/S0002-9947-1972-0295991-3
Reference: [8] P.  Hájek: Observations on non-commutative fuzzy logic.Soft Computing 8 (2003), 38–43. 10.1007/s00500-002-0246-y
Reference: [9] C.  Holland: The lattice-ordered group of automorphism of an ordered set.Michigan Math.  J. 10 (1963), 399–408. Zbl 0116.02102, MR 0158009, 10.1307/mmj/1028998976
.

Files

Files Size Format View
CzechMathJ_56-2006-1_5.pdf 367.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo