Previous |  Up |  Next

Article

Title: On a homogeneity condition for $MV$-algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 1
Year: 2006
Pages: 79-98
Summary lang: English
.
Category: math
.
Summary: In this paper we deal with a homogeneity condition for an $MV$-algebra concerning a generalized cardinal property. As an application, we consider the homogeneity with respect to $\alpha $-completeness, where $\alpha $ runs over the class of all infinite cardinals. (English)
Keyword: $MV$-algebra
Keyword: generalized cardinal property
Keyword: projectability
Keyword: orthogonal completeness
Keyword: direct product
MSC: 06D35
idZBL: Zbl 1164.06314
idMR: MR2206288
.
Date available: 2009-09-24T11:31:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128055
.
Reference: [1] S. J.  Bernau: Lateral and Dedekind completion of archimedean lattice groups.J.  London Math. Soc. 12 (1976), 320–322. Zbl 0333.06008, MR 0401579, 10.1112/jlms/s2-12.3.320
Reference: [2] R.  Cignoli, I. M. I.  D’Ottaviano, and D.  Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097
Reference: [3] P. F.  Conrad: Lateral completion of lattice ordered groups.Proc. London Math. Soc. 19 (1969), 444–480. MR 0244125, 10.1112/plms/s3-19.3.444
Reference: [4] A.  Dvurečenskij, S.  Pulmannová: New Trends in Quantum Structures.Kluwer Academic Publishers and Ister Science, Dordrecht and Bratislava, 2000. MR 1861369
Reference: [5] J.  Jakubík: Cardinal properties of lattice ordered groups.Fundamenta Math. 74 (1972), 85–98. MR 0302528, 10.4064/fm-74-2-85-98
Reference: [6] J.  Jakubík: Orthogonal hull of a strongly projectable lattice ordered group.Czechoslovak Math.  J. 28 (1978), 484–504. MR 0505957
Reference: [7] J.  Jakubík: Direct product decompositions of $MV$-algebras.Czechoslovak Math.  J. 44 (1994), 725–739.
Reference: [8] J.  Jakubík: On complete $MV$-algebras.Czechoslovak Math.  J. 45 (1995), 473–480. MR 1344513
Reference: [9] J.  Jakubík: On archimedean $MV$-algebras.Czechoslovak Math.  J. 48 (1998), 575–582. MR 1637871, 10.1023/A:1022436113418
Reference: [10] J.  Jakubík: Retract mappings of projectable $MV$-algebras.Soft Computing 4 (2000), 27–32.
Reference: [11] J.  Jakubík: Direct product decompositions of pseudo $MV$-algebras.Archivum Math. 37 (2001), 131–142. MR 1838410
Reference: [12] J.  Jakubík: On the $\alpha $-completeness of pseudo $MV$-algebras.Math. Slovaca 52 (2002), 511–516. MR 1963441
Reference: [13] J.  Jakubík: Generalized cardinal properties of lattices and lattice ordered groups.Czechoslovak Math.  J 54 (2004), 1035–1053. MR 2100012, 10.1007/s10587-004-6449-x
Reference: [14] R. S.  Pierce: Some questions about complete Boolean-algebras.Proc. Sympos. Pure Math. 2 (1961), 129–140. Zbl 0101.27104, MR 0138570
Reference: [15] E. C.  Weinberg: Higher degrees of distributivity in lattices of continuous functions.Trans. Amer. Math. Soc. 104 (1962), 334–346. Zbl 0105.09401, MR 0138569, 10.1090/S0002-9947-1962-0138569-8
Reference: [16] W. A.  Luxemburg, A. C.  Zaanen: Riesz Spaces, Vol.  1.North Holland, Amsterdam, 1971.
.

Files

Files Size Format View
CzechMathJ_56-2006-1_7.pdf 385.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo