Previous |  Up |  Next

Article

Title: Weak edge-degree domination in hypergraphs (English)
Author: Acharya, Belmannu Devadas
Author: Gupta, Purnima
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 1
Year: 2006
Pages: 99-108
Summary lang: English
.
Category: math
.
Summary: In this paper we extend the notion of weak degree domination in graphs to hypergraphs and find relationships among the domination number, the weak edge-degree domination number, the independent domination number and the independence number of a given hypergraph. (English)
Keyword: hypergraph
Keyword: weak degree domination number
Keyword: independent domination number
Keyword: graph theory
MSC: 05C65
MSC: 05C69
idZBL: Zbl 1164.05415
idMR: MR2206289
.
Date available: 2009-09-24T11:31:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128056
.
Reference: [1] B. D.  Acharya: Contributions to the theories of hypergraphs, graphoids and graphs.PhD.  Thesis, Indian Institute of Technology, Bombay, 1975.
Reference: [2] B. D.  Acharya: Separability and acyclicity in hypergraphs.In: Proceedings of the Symposium on Graph Theory. ISI Lecture Notes in Mathematics, No. 4 (A. R.  Rao, ed.), The Macmillan Comp., Calcutta, 1979, pp. 65–83. Zbl 0483.05051, MR 0553933
Reference: [3] B. D.  Acharya: On the cyclomatic number of a hypergraph.Discrete Mathematics 27 (1979), 111–116. Zbl 0407.05066, MR 0537468, 10.1016/0012-365X(79)90103-1
Reference: [4] B. D.  Acharya, M.  Las Vergnas: Hypergraphs with cyclomatic number zero, triangulated graphs and an inequality.J.  Combinatorial Theory, Ser.  B 33 (1982), 52–56. MR 0678170, 10.1016/0095-8956(82)90056-9
Reference: [5] B. D.  Acharya: Full sets in hypergraphs.Sankhya: The Indian J.  Statistics. Special Vol. 54 (1992), 1–6. Zbl 0882.05099, MR 1234671
Reference: [6] B. D.  Acharya: Strongly Helly hypergraphs.J.  Ramanujan Math. Soc. 11 (1996), 139–144. Zbl 0867.05050, MR 1429306
Reference: [7] B. D.  Acharya, Purnima Gupta: A direct inductive proof of a conjecture due to E.  Sampathkumar and L.  Pushpa Latha.Nat. Acad. Sci.-Letters 21 (1998), 84–90. MR 1639204
Reference: [8] C.  Berge: Graphs and Hypergraphs.North-Holland Elsevier Publ., Amsterdam, 1973. Zbl 0254.05101, MR 0357172
Reference: [9] C.  Berge: Hypergraphs.North-Holland Elsevier Publ., Amsterdam, 1989. Zbl 0674.05001, MR 1013569
Reference: [10] F.  Dacar: Cyclicity in hypergraphs.Discrete Mathematics 182 (1998), 53–67. MR 1603720, 10.1016/S0012-365X(97)00133-7
Reference: [11] A.  Gyarfas, M. S.  Jacobson, A. E.  Kezdy, and J.  Lehel: Odd cycles and $\theta $-cycles in hypergraphs.“Paul Erdös and his Mathematics: Research Communications”, Janos Bolyayi Mathematical Society, Budapest, 1990, pp. 96–98. MR 1901889
Reference: [12] J. H.  Hattingh, R. C.  Laskar: On weak domination in graphs.Ars Comb. 49 (1998), 205–216. MR 1633119
Reference: [13] T. W.  Haynes, S. T.  Hedetniemi, and P. J.  Slater: Fundamentals of Domination in Graphs.Marcel Dekker, New York, 1998. MR 1605684
Reference: [14] M.  Lewin: On hypergraphs without significant cycles.J.  Combinatorial Theory, Ser.  B 20 (1976), 80–83. Zbl 0335.05135, MR 0429653, 10.1016/0095-8956(76)90070-8
Reference: [15] D.  Rautenbach: Bounds on the weak domination number.Australas. J. Comb. 18 (1998), 245–251. Zbl 0914.05041, MR 1658286
Reference: [16] E.  Sampathkumar, L.  Pushpa Latha: Strong weak domination and domination balance in a graph.Discrete Mathematics 161 (1996), 235–242. MR 1420536, 10.1016/0012-365X(95)00231-K
Reference: [17] D. B.  West: Introduction to Graph Theory.Prentice Hall, New Jersey, 1996. Zbl 0845.05001, MR 1367739
.

Files

Files Size Format View
CzechMathJ_56-2006-1_8.pdf 352.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo