Previous |  Up |  Next

Article

Title: Removable singularities for weighted Bergman spaces (English)
Author: Björn, Anders
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 1
Year: 2006
Pages: 179-227
Summary lang: English
.
Category: math
.
Summary: We develop a theory of removable singularities for the weighted Bergman space ${\mathcal A}^p_\mu (\Omega )=\lbrace f \text{analytic} \text{in} \Omega \: \int _\Omega |f|^p \mathrm{d}\mu < \infty \rbrace $, where $\mu $ is a Radon measure on $\mathbb{C}$. The set $A$ is weakly removable for ${\mathcal A}^p_\mu (\Omega \setminus A)$ if ${\mathcal A}^p_\mu (\Omega \setminus A) \subset \text{Hol}(\Omega )$, and strongly removable for ${\mathcal A}^p_\mu (\Omega \setminus A)$ if ${\mathcal A}^p_\mu (\Omega \setminus A) = {\mathcal A}^p_\mu (\Omega )$. The general theory developed is in many ways similar to the theory of removable singularities for Hardy $H^p$ spaces, $\mathop {\mathrm BMO}$ and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable. In the case when weak and strong removability are the same for all sets, in particular if $\mu $ is absolutely continuous with respect to the Lebesgue measure $m$, we are able to say more than in the general case. In this case we obtain a Dolzhenko type result saying that a countable union of compact removable singularities is removable. When $\mathrm{d}\mu = w\mathrm{d}m$ and $w$ is a Muckenhoupt $A_p$ weight, $1<p<\infty $, the removable singularities are characterized as the null sets of the weighted Sobolev space capacity with respect to the dual exponent $p^{\prime }=p/(p-1)$ and the dual weight $w^{\prime }=w^{1/(1-p)}$. (English)
Keyword: analytic continuation
Keyword: analytic function
Keyword: Bergman space
Keyword: capacity
Keyword: exceptional set
Keyword: holomorphic function
Keyword: Muckenhoupt weight
Keyword: removable singularity
Keyword: singular set
Keyword: Sobolev space
Keyword: weight
MSC: 30B40
MSC: 30D60
MSC: 32A36
MSC: 32D20
MSC: 46E10
MSC: 46E15
idZBL: Zbl 1164.30303
idMR: MR2207013
.
Date available: 2009-09-24T11:32:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128060
.
Reference: [1] D. R. Adams and L. I. Hedberg: Function Spaces and Potential Theory.Springer, Berlin-Heidelberg, 1995. MR 1411441
Reference: [2] L. V. Ahlfors and A. Beurling: Conformal invariants and function-theoretic null-sets.Acta Math. 83 (1950), 101–129. MR 0036841, 10.1007/BF02392634
Reference: [3] N. Arcozzi and A. Björn: Dominating sets for analytic and harmonic functions and completeness of weighted Bergman spaces.Math. Proc. Roy. Irish Acad. 102A (2002), 175–192. MR 1961636
Reference: [4] A. Björn: Removable singularities for Hardy spaces.Complex Variables Theory Appl. 35 (1998), 1–25. MR 1609914, 10.1080/17476939808815069
Reference: [5] A. Björn: Removable singularities on rectifiable curves for Hardy spaces of analytic functions.Math. Scand. 83 (1998), 87–102. MR 1662084, 10.7146/math.scand.a-13844
Reference: [6] A. Björn: Removable singularities for weighted Bergman spaces.Preprint, LiTH-MAT-R-1999-23, Linköpings universitet, Linköping, 1999. MR 2207013
Reference: [7] A. Björn: Removable singularities for $H^p$ spaces of analytic functions, $0<p<1$.Ann. Acad. Sci. Fenn. Math. 26 (2001), 155–174. MR 1816565
Reference: [8] A. Björn: Properties of removable singularities for Hardy spaces of analytic functions.J. London Math. Soc. 66 (2002), 651–670. MR 1934298, 10.1112/S002461070200354X
Reference: [9] A. Björn: Removable singularities for analytic functions in BMO and locally Lipschitz spaces.Math. Z. 244 (2003), 805–835. MR 2000460, 10.1007/s00209-003-0524-0
Reference: [10] L. Carleson: Selected Problems on Exceptional Sets.Van Nostrand, Princeton, N. J., 1967. Zbl 0189.10903, MR 0225986
Reference: [11] J. J. Carmona and J. J. Donaire: On removable singularities for the analytic Zygmund class.Michigan Math. J. 43 (1996), 51–65. MR 1381599, 10.1307/mmj/1029005389
Reference: [12] E. P. Dolzhenko: On the removal of singularities of analytic functions.Uspekhi Mat. Nauk 18, No. 4 (1963), 135–142. (Russian)
Reference: [13] J. García-Cuerva and J. L. Rubio de Francia: Weighted Norm Inequalities and Related Topics.North-Holland, Amsterdam, 1985. MR 0807149
Reference: [14] J. B. Garnett: Analytic Capacity and Measure.Lecture Notes in Math. Vol. 297, Springer, Berlin-Heidelberg, 1972. Zbl 0253.30014, MR 0454006
Reference: [15] V. P. Havin and V. G. Maz’ya: On approximation in the mean by analytic functions.Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 23, No. 13 (1968), 62–74. (Russian) MR 0235131
Reference: [16] L. I. Hedberg: Approximation in the mean by analytic functions.Trans. Amer. Math. Soc. 163 (1972), 157–171. Zbl 0236.31010, MR 0432886, 10.1090/S0002-9947-1972-0432886-6
Reference: [17] L. I. Hedberg: Removable singularities and condenser capacities.Ark. Mat. 12 (1974), 181–201. Zbl 0297.30017, MR 0361050, 10.1007/BF02384755
Reference: [18] J. Heinonen, T. Kilpeläinen and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford Univ. Press, Oxford, 1993. MR 1207810
Reference: [19] L. Hörmander: The Analysis of Linear Partial Differential Operators I.2nd ed., Springer, Berlin-Heidelberg, 1990. MR 1065993
Reference: [20] R. Kaufman: Hausdorff measure, BMO and analytic functions.Pacific J. Math. 102 (1982), 369–371. Zbl 0511.30001, MR 0686557, 10.2140/pjm.1982.102.369
Reference: [21] S. Ya. Khavinson: Analytic capacity of sets, joint nontriviality of various classes of analytic functions and the Schwarz lemma in arbitrary domains.Mat. Sb. 54 (1961), 3–50. (Russian) Zbl 0147.33203, MR 0136720
Reference: [22] S. Ya. Khavinson: Removable singularities of analytic functions of the V. I. Smirnov class.Problems in Modern Function Theory, Proceedings of a Conference (P. P. Belinskiĭ, ed.), Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk, 1976, pp. 160–166. (Russian) MR 0507787
Reference: [23] S. V. Khrushchëv: A simple proof of a removable singularity theorem for a class of Lipschitz functions.Investigations on Linear Operators and the Theory of Functions XI, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) Vol. 113, Nauka, Leningrad, 1981, pp. 199–203, 267. (Russian) MR 0629840
Reference: [24] T. Kilpeläinen: Weighted Sobolev spaces and capacity.Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 95–113.
Reference: [25] P. Koskela: Removable singularities for analytic functions.Michigan Math. J. 40 (1993), 459–466. Zbl 0805.30001, MR 1236172, 10.1307/mmj/1029004831
Reference: [26] J. Král: Singularités non essentielles des solutions des équations aux dérivées partielles.Séminaire de Théorie du Potentiel (Paris, 1972–1974), Lecture Notes in Math. Vol. 518, Springer, Berlin-Heidelberg, 1976, pp. 95–106. MR 0509059
Reference: [27] X. U. Nguyen: Removable sets of analytic functions satisfying a Lipschitz condition.Ark. Mat. 17 (1979), 19–27. Zbl 0442.30033, MR 0543500
Reference: [28] W. Rudin: Analytic functions of class $H_p$.Trans. Amer. Math. Soc. 78 (1955), 46–66. Zbl 0067.30201, MR 0067993
Reference: [29] W. Rudin: Functional Analysis.2nd ed., McGraw-Hill, New York, 1991. Zbl 0867.46001, MR 1157815
Reference: [30] X. Tolsa: Painlevé’s problem and the semiadditivity of the analytic capacity.Acta Math. 190 (2003), 105–149. MR 1982794, 10.1007/BF02393237
Reference: [31] J. Väisälä: Lectures on $n$-Dimensional Quasiconformal Mappings.Lecture Notes in Math. vol. 229, Springer, Berlin-Heidelberg, 1971. MR 0454009
.

Files

Files Size Format View
CzechMathJ_56-2006-1_12.pdf 617.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo