Previous |  Up |  Next

Article

Title: On signed distance-$k$-domination in graphs (English)
Author: Xing, Huaming
Author: Sun, Liang
Author: Chen, Xuegang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 1
Year: 2006
Pages: 229-238
Summary lang: English
.
Category: math
.
Summary: The signed distance-$k$-domination number of a graph is a certain variant of the signed domination number. If $v$ is a vertex of a graph $G$, the open $k$-neighborhood of $v$, denoted by $N_k(v)$, is the set $N_k(v)=\lbrace u\mid u\ne v$ and $d(u,v)\le k\rbrace $. $N_k[v]=N_k(v)\cup \lbrace v\rbrace $ is the closed $k$-neighborhood of $v$. A function $f\: V\rightarrow \lbrace -1,1\rbrace $ is a signed distance-$k$-dominating function of $G$, if for every vertex $v\in V$, $f(N_k[v])=\sum _{u\in N_k[v]}f(u)\ge 1$. The signed distance-$k$-domination number, denoted by $\gamma _{k,s}(G)$, is the minimum weight of a signed distance-$k$-dominating function on $G$. The values of $\gamma _{2,s}(G)$ are found for graphs with small diameter, paths, circuits. At the end it is proved that $\gamma _{2,s}(T)$ is not bounded from below in general for any tree $T$. (English)
Keyword: signed distance-$k$-domination number
Keyword: signed distance-$k$-dominating function
Keyword: signed domination number
MSC: 05C69
idZBL: Zbl 1164.05427
idMR: MR2207014
.
Date available: 2009-09-24T11:32:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128061
.
Reference: [1] J. H.  Hattingh, M. A.  Henning, and E.  Ungerer: Partial signed domination in graphs.Ars Combin. 48 (1998), 33–42. MR 1623038
Reference: [2] T. W.  Haynes, S. T.  Hedetniemi, and P. J.  Slater: Fundamentals of Domination in Graphs.Marcel Dekker, New York, 1998. MR 1605684
Reference: [3] T. W.  Haynes, S. T.  Hedetniemi, and P. J.  Slater: Domination in Graphs: Advanced Topics.Marcel Dekker, New York, 1998. MR 1605685
Reference: [4] M. A.  Henning: Domination in regular graphs.Ars Combin. 43 (1996), 263–271. Zbl 0881.05101, MR 1415996
.

Files

Files Size Format View
CzechMathJ_56-2006-1_13.pdf 329.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo