Previous |  Up |  Next

Article

Title: On positive solutions for a nonlinear boundary value problem with impulse (English)
Author: Bereketoglu, Huseyin
Author: Huseynov, Aydin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 1
Year: 2006
Pages: 247-265
Summary lang: English
.
Category: math
.
Summary: In this paper we study nonlinear second order differential equations subject to separated linear boundary conditions and to linear impulse conditions. Sign properties of an associated Green’s function are investigated and existence results for positive solutions of the nonlinear boundary value problem with impulse are established. Upper and lower bounds for positive solutions are also given. (English)
Keyword: impulse conditions
Keyword: Green’s function
Keyword: completely continuous operator
Keyword: fixed point theorem in cones
MSC: 34A37
MSC: 34B15
MSC: 34B18
MSC: 34B37
MSC: 47N20
idZBL: Zbl 1164.34371
idMR: MR2207016
.
Date available: 2009-09-24T11:32:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128063
.
Reference: [1] F. M. Atici and G. Sh. Guseinov: On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions.J. Comput. Appl. Math. 132 (2001), 341–356. MR 1840633, 10.1016/S0377-0427(00)00438-6
Reference: [2] D. D. Bainov and P. S. Simeonov: Impulsive Differential Equations: Asymtotic Properties of the Solutions.World Scientific, Singapore, 1995. MR 1331144
Reference: [3] P. W. Eloe and J. Henderson: Positive solutions of boundary value problems for ordinary differential equations with impulse.Dynam. Contin. Discrete Impuls. Systems 4 (1998), 285–294. MR 1621834
Reference: [4] P. W. Eloe and M. Sokol: Positive solutions and conjugate points for a boundary value problem with impulse.Dynam. Systems Appl. 7 (1998), 441–449. MR 1664566
Reference: [5] L. H. Erbe, S. Hu and H. Wang: Multiple positive solutions of some boundary value problems.J. Math. Anal. Appl. 184 (1994), 640–648. MR 1281534, 10.1006/jmaa.1994.1227
Reference: [6] L. H. Erbe and H. Wang: On the existence of positive solutions of ordinary differential equations.Proc. Amer. Math. Soc. 120 (1994), 743–748. MR 1204373, 10.1090/S0002-9939-1994-1204373-9
Reference: [7] D. Guo and V. Lakshmikantham: Nonlinear Problems in Abstract Cones.Academic Press, San Diego, 1998. MR 0959889
Reference: [8] M. A. Krasnosel’skii: Positive Solutions of Operator Equations.Noordhoff, Groningen, 1964. MR 0181881
Reference: [9] M. A. Neumark: Lineare Differential Operatoren.Akademie-Verlag, Berlin, 1967.
Reference: [10] A. M. Samoilenko and N. A. Perestyuk: Impulsive Differential Equations.World Scientific, Singapore, 1995. MR 1355787
Reference: [11] Š. Schwabik, M. Tvrdý and O. Vejvoda: Differential and Integral Equations: Boundary Value Problems and Adjoint.Academia and Reidel, Praha and Dordrecht, 1979. MR 0542283
Reference: [12] Š. Schwabik: Generalized Ordinary Differential Equations.World Scientific, Singapore, 1992. Zbl 0781.34003, MR 1200241
Reference: [13] M. Tvrdý: Differential and integral equations in the space of regulated functions.Memoirs on Differential Equations and Mathematical Physics 25 (2002), 1–104. MR 1903190
Reference: [14] M. Tvrdý: Linear distributional differential equations of the second order.Math. Bohem. 119 (1994), 415–436. MR 1316594
.

Files

Files Size Format View
CzechMathJ_56-2006-1_15.pdf 352.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo