Previous |  Up |  Next

Article

Title: $k$-systems, $k$-networks and $k$-covers (English)
Author: Li, Jinjin
Author: Lin, Shou
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 1
Year: 2006
Pages: 239-245
Summary lang: English
.
Category: math
.
Summary: The concepts of $k$-systems, $k$-networks and $k$-covers were defined by A. Arhangel’skiǐ in 1964, P. O’Meara in 1971 and R. McCoy, I. Ntantu in 1985, respectively. In this paper the relationships among $k$-systems, $k$-networks and $k$-covers are further discussed and are established by $mk$-systems. As applications, some new characterizations of quotients or closed images of locally compact metric spaces are given by means of $mk$-systems. (English)
Keyword: $k$-systems
Keyword: $k$-networks
Keyword: $k$-covers
Keyword: $k$-spaces
Keyword: point-countable families
Keyword: hereditarily closure-preserving families
MSC: 54C10
MSC: 54D50
MSC: 54E45
idZBL: Zbl 1164.54359
idMR: MR2207015
.
Date available: 2009-09-24T11:32:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128062
.
Reference: [1] A.  Arhangel’skiǐ: On quotient mappings of metric spaces.Dokl. Akad. Nauk. SSSR 155 (1964), 247–250. (Russian)
Reference: [2] D. K.  Burke: ARRAY(0x9a06458).K. Kunen, J. E.  Vaughan (eds.), North-Holland, , 1984, pp. 347–422. MR 0776619
Reference: [3] J.  Chaber: Generalizations of Lašnev’s theorem.Fund. Math. 119 (1983), 85–91. Zbl 0547.54009, MR 0731811, 10.4064/fm-119-2-85-91
Reference: [4] Huaipeng Chen: On $s$-images of metric spaces.Topology Proc. 24 (1999), 95–103. MR 1802679
Reference: [5] L.  Foged: A characterization of closed images of metric spaces.Proc. Amer. Math. Soc. 95 (1985), 487–490. Zbl 0592.54027, MR 0806093, 10.1090/S0002-9939-1985-0806093-3
Reference: [6] G.  Gruenhage: Generalized metric spaces.In: Handbook of Set-theoretic Topology, K. Kunen, J. E.  Vaughan (eds.), North-Holland, , 1984, pp. 423–501. Zbl 0555.54015, MR 0776629
Reference: [7] G.  Gruenhage, E.  Michael, and Y.  Tanaka: Spaces determined by point-countable covers.Pacific J.  Math. 113 (1984), 303–332. MR 0749538, 10.2140/pjm.1984.113.303
Reference: [8] Jinjin  Li: $k$-covers and certain quotient images of paracompact locally compact spaces.Acta Math. Hungar. 95 (2002), 281–286. MR 1909598, 10.1023/A:1015645107703
Reference: [9] Jinjin  Li, Shou  Lin: Spaces with compact-countable $k$-systems.Acta Math. Hungar. 93 (2001), 1–6. MR 1924664, 10.1023/A:1013807430701
Reference: [10] Zhaowen  Li, Jinjin  Li: On Michael-Nagami’s problem.Questions Answers in General Topology 12 (1994), 85–91.
Reference: [11] Shou  Lin: On spaces with a $k$-network consisting of compact subsets.Topology Proc. 20 (1995), 185–190. MR 1429180
Reference: [12] R. A.  McCoy, I.  Ntantu: Countability properties of function spaces with set-open topologies.Topology Proc. 10 (1985), 329–345. MR 0876902
Reference: [13] E.  Michael: A note on closed maps and compact sets.Israel J.  Math. 2 (1964), 173–176. Zbl 0136.19303, MR 0177396, 10.1007/BF02759940
Reference: [14] P.  O’Meara: On paracompactness in function spaces with the compact-open topology.Proc. Amer. Math. Soc. 29 (1971), 183–189. MR 0276919, 10.1090/S0002-9939-1971-0276919-3
Reference: [15] M.  Sakai: On spaces with a point-countable compact $k$-network.Yokohama Math.  J. 48 (2000), 13–16. Zbl 0964.54023, MR 1788830
Reference: [16] Y.  Tanaka: Closed images of locally compact spaces and Fréchet space.Topology Proc. 7 (1982), 279–292. MR 0715799
Reference: [17] Y.  Tanaka: Point-countable $k$-systems and products of $k$-spaces.Pacific J.  Math. 101 (1982), 199–208. Zbl 0498.54023, MR 0671852, 10.2140/pjm.1982.101.199
Reference: [18] Y.  Tanaka: Theory of $k$-networks II.Questions Answers in General Topology 19 (2001), 27–46. Zbl 0970.54023, MR 1815344
.

Files

Files Size Format View
CzechMathJ_56-2006-1_14.pdf 318.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo