Previous |  Up |  Next

Article

Title: Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation (English)
Author: Park, Jong Yeoul
Author: Park, Sun Hye
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 273-286
Summary lang: English
.
Category: math
.
Summary: We consider the damped semilinear viscoelastic wave equation \[ u^{\prime \prime } - \Delta u + \int ^t_0 h (t-\tau ) \div \lbrace a \nabla u(\tau ) \rbrace \mathrm{d}\tau + g(u^{\prime }) = 0 \quad \text{in}\hspace{5.0pt}\Omega \times (0,\infty ) \] with nonlocal boundary dissipation. The existence of global solutions is proved by means of the Faedo-Galerkin method and the uniform decay rate of the energy is obtained by following the perturbed energy method provided that the kernel of the memory decays exponentially. (English)
Keyword: asymptotic stability
Keyword: viscoelastic problems
Keyword: boundary dissipation
Keyword: wave equation
MSC: 35B35
MSC: 35B40
MSC: 35L15
MSC: 35L70
MSC: 35Q72
MSC: 65M60
MSC: 74D10
MSC: 74H20
idZBL: Zbl 1164.35445
idMR: MR2291736
.
Date available: 2009-09-24T11:33:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128066
.
Reference: [1] J. J.  Bae, J. Y.  Park, and J. M.  Jeong: On uniform decay of solutions for wave equation of Kirchhoff type with nonlinear boundary damping and memory source term.Appl. Math. Comput. 138 (2003), 463–478. MR 1950077, 10.1016/S0096-3003(02)00163-7
Reference: [2] E. E. Beckenbach and R. Bellman: Inequalities.Springer-Verlag, Berlin, 1971. MR 0192009
Reference: [3] M. M. Cavalcanti: Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation.Discrete and Continuous Dynamical Systems 8 (2002), 675–695. Zbl 1009.74034, MR 1897875
Reference: [4] M. M.  Cavalcanti, V. N.  Domingos Cavalcanti, T. F.  Ma, and J. A.  Soriano: Global existence and asymptotic stability for viscoelastic problems.Differential and Integral Equations 15 (2002), 731–748. MR 1893844
Reference: [5] M. M.  Cavalcanti, V. N.  Domingos Cavalcanti, J. S.  Prates Filho, and J. A.  Soriano: Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping.Diff. Int. Eqs. 14 (2001), 85–116. MR 1797934
Reference: [6] I.  Lasiecka, D.  Tataru: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping.Diff. Int. Eqs. 6 (1993), 507–533. MR 1202555
Reference: [7] J.-L.  Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod-Gauthier Villars, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [8] J. Y.  Park, J. J.  Bae: On coupled wave equation of Kirchhoff type with nonliear boundary damping and memory term.Appl. Math. Comput. 129 (2002), 87–105. MR 1897321, 10.1016/S0096-3003(01)00031-5
Reference: [9] B.  Rao: Stabilization of Kirchhoff plate equation in star-shaped domain by nonlinear feedback.Nonlinear Anal., T.M.A. 20 (1993), 605–626. MR 1214731, 10.1016/0362-546X(93)90023-L
Reference: [10] M. L.  Santos: Decay rates for solutions of a system of wave equations with memory.Elect.  J. Diff. Eqs. 38 (2002), 1–17. Zbl 1010.35012, MR 1907714
Reference: [11] E.  Zuazua: Uniform stabilization of the wave equation by nonlinear boundary feedback.SIAM J.  Control Optim. 28 (1990), 466–477. Zbl 0695.93090, MR 1040470, 10.1137/0328025
.

Files

Files Size Format View
CzechMathJ_56-2006-2_1.pdf 342.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo