Previous |  Up |  Next

Article

Title: Finite rank operators in Jacobson radical ${\scr R}\sb{{\scr N}\otimes{\scr M}}$ (English)
Author: Zhe, Dong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 287-298
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate finite rank operators in the Jacobson radical $\mathcal R_{\mathcal N\otimes \mathcal M}$ of $\mathop {\mathrm Alg}(\mathcal N\otimes \mathcal M)$, where $\mathcal N$, $\mathcal M$ are nests. Based on the concrete characterizations of rank one operators in $\mathop {\mathrm Alg}(\mathcal N\otimes \mathcal M)$ and $\mathcal R_{\mathcal N\otimes \mathcal M}$, we obtain that each finite rank operator in $\mathcal R_{\mathcal N\otimes \mathcal M}$ can be written as a finite sum of rank one operators in $\mathcal R_{\mathcal N\otimes \mathcal M}$ and the weak closure of $\mathcal R_{\mathcal N\otimes \mathcal M}$ equals $\mathop {\mathrm Alg}({\mathcal N\otimes \mathcal M})$ if and only if at least one of $\mathcal N$, $\mathcal M$ is continuous. (English)
Keyword: Jacobson radical
Keyword: finite rank operator
MSC: 47L35
MSC: 47L75
idZBL: Zbl 1164.47398
idMR: MR2291737
.
Date available: 2009-09-24T11:33:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128067
.
Reference: [1] K. Davidson, J. Orr: The Jacobson radical of a CSL  algebra.Trans. Amer. Math. Soc. 344 (1994), 925–947. MR 1250816, 10.1090/S0002-9947-1994-1250816-9
Reference: [2] J. A. Erdos: On finite rank operators in nest algebras.J.  London Math. Soc. 43 (1968), 391–397. MR 0230156
Reference: [3] F. Gilfeather, A. Hopenwasser, and D. Larson: Reflexive algebras with finite width lattices: tensor products, cohomology, compact perturbation.J. Funct. Anal. 55 (1984), 176–199. MR 0733915
Reference: [4] A. Hopenwasser: The radical of a reflexive algebra.Pacific J. Math. 65 (1976), 375–392. MR 0440383, 10.2140/pjm.1976.65.375
Reference: [5] A. Hopenwasser, R. Moore: Finite rank operators in reflexive operator algebras.J. London Math. Soc. 27 (1983), 331–338. MR 0692538
Reference: [6] C. Laurie, W. Longstaff: A note on rank-one operators in reflexive algebras.Proc. Amer. Math. Soc. 89 (1983), 293–297. MR 0712641, 10.1090/S0002-9939-1983-0712641-2
Reference: [7] W. Longstaff: Strongly reflexive lattices.J. London Math. Soc. 11 (1975), 491–498. Zbl 0313.47002, MR 0394233
Reference: [8] W. Longstaff: Operators of rank one in reflexive algebras.Canadian J.  Math. 28 (1976), 19–23. Zbl 0317.46052, MR 0397435
Reference: [9] J. R. Ringrose: On some algebras of operators.Proc. London Math. Soc. 15 (1965), 61–83. Zbl 0135.16804, MR 0171174
Reference: [10] J. R. Ringrose: On some algebras of operators  II.Proc. London Math. Soc. 15 (1965), 61–83. MR 0171174
.

Files

Files Size Format View
CzechMathJ_56-2006-2_2.pdf 316.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo