Previous |  Up |  Next

Article

Title: Indecomposable matrices over a distributive lattice (English)
Author: Tan, Yi-jia
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 299-316
Summary lang: English
.
Category: math
.
Summary: In this paper, the concepts of indecomposable matrices and fully indecomposable matrices over a distributive lattice $L$ are introduced, and some algebraic properties of them are obtained. Also, some characterizations of the set $F_n(L)$ of all $n\times n$ fully indecomposable matrices as a subsemigroup of the semigroup $H_n(L)$ of all $n\times n$ Hall matrices over the lattice $L$ are given. (English)
Keyword: distributive lattice
Keyword: indecomposable matrix
Keyword: fully indecomposable matrix
Keyword: semigroup
Keyword: characterization
MSC: 06D05
MSC: 15A18
MSC: 15A33
idZBL: Zbl 1164.15326
idMR: MR2291738
.
Date available: 2009-09-24T11:33:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128068
.
Reference: [1] G. Frobenius: Über Matrizen aus nichtnegativen Elementen.Sitzb. d. Preuss, Akad. d. Wiss. (1912), 456–477.
Reference: [2] M. Marcus, H. Minc: Disjoint pairs of sets and incidence matrices.Illinois J.  Math. 7 (1963), 137–147. MR 0142473, 10.1215/ijm/1255637488
Reference: [3] Š. Schwarz: The semigroup of fully indecomposable relations and Hall relations.Czechoslovak Math. J. 23 (1973), 151–163. Zbl 0261.20057, MR 0316612
Reference: [4] C. Y. Chao: On a conjecture of the semigroup of fully indecomposable relations.Czechoslovak Math.  J. 27 (1977), 591–597. Zbl 0384.20051, MR 0450067
Reference: [5] C. Y. Chao, M. C. Zhang: On the semigroup of fully indecomposable relations.Czechoslovak Math.  J. 33 (1983), 314–319. MR 0699029
Reference: [6] J. Y. Shao, Q. Li: On the indices of convergence of an irreducible Boolean matrix.Linear Algebra Appl. 97 (1987), 185–210. MR 0916791, 10.1016/0024-3795(87)90149-2
Reference: [7] J. Y. Shao, Q. Li: The index set for the class of irreducible Boolean matrices with given period.Linear and Multilinear Algebra 22 (1988), 285–303. Zbl 0637.15013, MR 0937171, 10.1080/03081088808817840
Reference: [8] R. A. Brualdi, B. L. Liu: Fully indecomposable exponents of primitive matrices.Proc. Amer. Math. Soc. 112 (1991), 1193–1202. MR 1065941, 10.1090/S0002-9939-1991-1065941-8
Reference: [9] X. J. Wu, J. Y. Shao: The index set of convergence of irreducible Boolean matrices.J.  Math. Res. Exposition 12 (1992), 441–447. (Chinese) MR 1191081
Reference: [10] J. Y. Shao: On the indices of convergence of irreducible and nearly reducible Boolean matrices.Acta Math. Appl. Sinica 15 (1992), 333–344. (Chinese) Zbl 0762.05028, MR 1326871
Reference: [11] Y. J. Tan: The semigroup of Hall matrices over a distributive lattice.Semigroup Forum 61 (2000), 303–314. MR 1832190, 10.1007/PL00006027
Reference: [12] Y. J. Tan: Primitive lattice matrices.Southeast Asian Bull. Math. (to appear). Zbl 1057.15021, MR 1812689
Reference: [13] Y. J. Tan: On compositions of lattice matrices.Fuzzy Sets and Systems 129 (2002), 19–28. Zbl 1014.15011, MR 1907992
Reference: [14] Y. Giveón: Lattice matrices.Information and Control 7 (1964), 477–484. MR 0182512, 10.1016/S0019-9958(64)90173-1
Reference: [15] K. H. Kim: Boolean Matrix Theory and Applications.Marcel Dekker, New York, 1982. Zbl 0495.15003, MR 0655414
.

Files

Files Size Format View
CzechMathJ_56-2006-2_3.pdf 376.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo