| Title:
             | 
A note on characteristic classes (English) | 
| Author:
             | 
Zhou, Jianwei | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
56 | 
| Issue:
             | 
2 | 
| Year:
             | 
2006 | 
| Pages:
             | 
721-732 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
This paper studies the relationship between the sections and the Chern or Pontrjagin classes of a vector bundle by the theory of connection. Our results are natural generalizations of the Gauss-Bonnet Theorem. (English) | 
| Keyword:
             | 
fibre bundle | 
| Keyword:
             | 
characteristic class | 
| Keyword:
             | 
transgression | 
| Keyword:
             | 
Poincaré dual | 
| MSC:
             | 
53C05 | 
| MSC:
             | 
53C07 | 
| MSC:
             | 
55R25 | 
| MSC:
             | 
57R20 | 
| idZBL:
             | 
Zbl 1164.53334 | 
| idMR:
             | 
MR2291770 | 
| . | 
| Date available:
             | 
2009-09-24T11:37:27Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/128100 | 
| . | 
| Reference:
             | 
[1] R.  Bott, L.  Tu: Differential Forms in Algebraic Topology.Springer GTM 82, , 1982. Zbl 0496.55001, MR 0658304 | 
| Reference:
             | 
[2] S. S.  Chern: A simple intrinsic proof of the Gauss-Bonnet formula for the closed Riemannian manifolds.Ann. Math. 45 (1944), 747–752. MR 0011027, 10.2307/1969302 | 
| Reference:
             | 
[3] S. S.  Chern: On the curvature integral in a Riemannian manifold.Ann. Math. 46 (1945), 674–648. Zbl 0060.38104, MR 0014760, 10.2307/1969203 | 
| Reference:
             | 
[4] S. S.  Chern: Characteristic classes of Riemannian manifolds.Ann. Math. 47 (1946), 85–121. MR 0015793, 10.2307/1969037 | 
| Reference:
             | 
[5] S. S.  Chern: On curvature and characteristic classes of a Riemannian manifold.Abh. Math. Sem. Univ. Hamburg 20 (1955), 117–162. MR 0075647, 10.1007/BF02960745 | 
| Reference:
             | 
[6] P.  Griffiths, J.  Harris: Principles of Algebraic Geometry.Wiley-Interscience, New York, 1978. MR 0507725 | 
| Reference:
             | 
[7] S. Kobayashi, K.  Nomizu: Foundations of Differential Geometry, Vol.  2.Interscience Publishers, New York, 1969. | 
| Reference:
             | 
[8] H. B.  Lawson, H.  Michelsohn: Spin Geometry.Princeton University Press, Princeton, 1989. MR 1031992 | 
| Reference:
             | 
[9] V.  Mathai, D.  Quillen: Superconnections, Thom classes and equivariant differential forms.Topology 25 (1986), 85–110. MR 0836726, 10.1016/0040-9383(86)90007-8 | 
| Reference:
             | 
[10] J.  W.  Milnor, J. D.  Stasheff: Characteristic Classes. Ann. of Math. Studies, No.  76.Princeton University Press, Princeton, 1974. MR 0440554 | 
| . |