| Title:
             | 
Subdirect decompositions and the radical of a generalized Boolean algebra extension of a lattice ordered group (English) | 
| Author:
             | 
Jakubík, Ján | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
56 | 
| Issue:
             | 
2 | 
| Year:
             | 
2006 | 
| Pages:
             | 
733-754 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
The extension of a lattice ordered group $A$ by a generalized Boolean algebra $B$ will be denoted by $A_B$. In this paper we apply subdirect decompositions of $A_B$ for dealing with a question proposed by Conrad and Darnel. Further, in the case when $A$ is linearly ordered we investigate (i) the completely subdirect decompositions of $A_B$ and those of $B$, and (ii) the values of elements of $A_B$ and the radical $R(A_B)$. (English) | 
| Keyword:
             | 
lattice ordered group | 
| Keyword:
             | 
generalized Boolean algebra | 
| Keyword:
             | 
extension | 
| Keyword:
             | 
vector lattice | 
| Keyword:
             | 
subdirect decomposition | 
| Keyword:
             | 
value | 
| Keyword:
             | 
radical | 
| MSC:
             | 
06F15 | 
| MSC:
             | 
06F20 | 
| idZBL:
             | 
Zbl 1164.06328 | 
| idMR:
             | 
MR2291771 | 
| . | 
| Date available:
             | 
2009-09-24T11:37:35Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/128101 | 
| . | 
| Reference:
             | 
[1] G. Birkhoff: Lattice Theory.Third Edition, Providence, 1967. Zbl 0153.02501, MR 0227053 | 
| Reference:
             | 
[2] P. Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011 | 
| Reference:
             | 
[3] P. Conrad and M. R. Darnel: Generalized Boolean algebras in lattice ordered groups.Order 14 (1998), 295–319. MR 1644504 | 
| Reference:
             | 
[4] P. Conrad and M. R. Darnel: Subgroups and hulls of Specker lattice-ordered groups.Czechoslovak Math. J 51 (2001), 395–413. MR 1844319, 10.1023/A:1013759300701 | 
| Reference:
             | 
[5] C. Goffman: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions.Trans. Amer. Math. Soc. 88 (1958), 107–120. Zbl 0088.02602, MR 0097331 | 
| Reference:
             | 
[6] J. Jakubík: Cardinal properties of lattice ordered groups.Fundamenta Math. 74 (1972), 85–98. MR 0302528, 10.4064/fm-74-2-85-98 | 
| Reference:
             | 
[7] J. Jakubík: Torsion classes of Specker lattice ordered groups.Czechoslovak Math. J. 52 (2002), 469–482. MR 1923254, 10.1023/A:1021711326115 | 
| Reference:
             | 
[8] J. Jakubík: On vector lattices of elementary Carathéodory functions.Czechoslovak Math. J 55 (2005), 223-236. MR 2121669, 10.1007/s10587-005-0017-x | 
| Reference:
             | 
[9] J. Jakubík: Torsion classes and subdirect products of Carathéodory vector lattices.Math. Slovaca 56 (2006), 79–92. MR 2217581 | 
| Reference:
             | 
[10] J. Jakubík: Generalized Boolean algebra extensions of lattice ordered groups.Tatra Mt. Math. Publ. 30 (2005), 1–19. MR 2190244 | 
| Reference:
             | 
[11] F. Šik: Über subdirekte Summen geordneter Gruppen.Czechoslovak Math. J. 10 (1960), 400–424. MR 0123626 | 
| . |