Previous |  Up |  Next

Article

Title: Negation in bounded commutative $DR\ell$-monoids (English)
Author: Rachůnek, Jiří
Author: Slezák, Vladimír
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 755-763
Summary lang: English
.
Category: math
.
Summary: The class of commutative dually residuated lattice ordered monoids ($DR\ell $-monoids) contains among others Abelian lattice ordered groups, algebras of Hájek’s Basic fuzzy logic and Brouwerian algebras. In the paper, a unary operation of negation in bounded $DR\ell $-monoids is introduced, its properties are studied and the sets of regular and dense elements of $DR\ell $-monoids are described. (English)
Keyword: $DR\ell $-monoid
Keyword: $MV$-algebra
Keyword: $BL$-algebra
Keyword: Brouwerian algebra
Keyword: negation
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1164.06325
idMR: MR2291772
.
Date available: 2009-09-24T11:37:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128102
.
Reference: [1] R. L. O. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning.Kluwer, Dordrecht, 2000. MR 1786097
Reference: [2] R. Cignoli and A. Torrens: Hájek basic fuzzy logic and Lukasiewicz infinite-valued logic.Arch. Math. Logic 42 (2003), 361–370. MR 2018087, 10.1007/s001530200144
Reference: [3] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer, Amsterdam, 1998. MR 1900263
Reference: [4] J. Rachůnek: $DR\ell $-semigroups and $MV$-algebras.Czechoslovak Math. J. 48 (1998), 365–372. MR 1624268, 10.1023/A:1022801907138
Reference: [5] J. Rachůnek: $MV$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115
Reference: [6] J. Rachůnek: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids.Math. Bohem. 126 (2001), 561–569. MR 1970259
Reference: [7] K. L. N. Swamy: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284
Reference: [8] K. L. N. Swamy: Dually residuated lattice ordered semigroups II.Math. Ann. 160 (1965), 65–71. MR 0191851
Reference: [9] K. L. N. Swamy: Dually residuated lattice ordered semigroups III.Math. Ann. 167 (1966), 71–74. Zbl 0158.02601, MR 0200364, 10.1007/BF01361218
Reference: [10] K. N. Swamy and B. V. Subba Rao: Isometries in dually residuated lattice ordered semigroups.Math. Sem. Notes (Kobe) 8 (1980), 369–380. MR 0601906
.

Files

Files Size Format View
CzechMathJ_56-2006-2_37.pdf 302.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo