Previous |  Up |  Next

Article

Title: A simple method for constructing non-liouvillian first integrals of autonomous planar systems (English)
Author: Schulze-Halberg, Axel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 987-999
Summary lang: English
.
Category: math
.
Summary: We show that a transformation method relating planar first-order differential systems to second order equations is an effective tool for finding non-liouvillian first integrals. We obtain explicit first integrals for a subclass of Kukles systems, including fourth and fifth order systems, and for generalized Liénard-type systems. (English)
Keyword: planar polynomial systems
Keyword: Kukles systems
Keyword: generalized Liénard systems
Keyword: non-liouvillian first integrals
MSC: 33C99
MSC: 34A25
MSC: 34C07
MSC: 34C14
MSC: 81U15
idZBL: Zbl 1164.34396
idMR: MR2261671
.
Date available: 2009-09-24T11:40:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128124
.
Reference: [1] M.  Bronstein and Sébastien Lafaille: Solutions of linear ordinary differential equations in terms of special functions.In: Proceedings of the 2002  International Symposium on Symbolic and Algebraic Computation, , , 2002, pp. 23–28. MR 2035229
Reference: [2] L. A. Čerkas: Conditions for a center for a certain Liénard equation.Differencial’nye Uravnenija 12 (1976), 292–298, 379. MR 0404755
Reference: [3] J.  Chavarriga, I. A.  García, and J. Giné: On Lie’s symmetries for planar polynomial differential systems.Nonlinearity 14 (2001), 863–880. MR 1837644, 10.1088/0951-7715/14/4/313
Reference: [4] E. S.  Cheb-Terrab: Non-Liouvillian solutions for second order linear ODEs.Proceedings of the Workshop on Group Theory and Numerical Analysis, CRM, Montreal, 2003. MR 2182813
Reference: [5] G.  Darboux: Mémoire sur les équations différentielles algébraiques du premier ordre et du premier degré (Mélanges).Bull. Sci. Math. 2 (1878), 60–96, 123–144, 151–200.
Reference: [6] H.  Giacomini, J.  Giné, and M.  Grau: Integrability of planar polynomial differential systems through linear differential equations.Rocky Mountain J.  Math. (2004), . MR 2234815
Reference: [7] J.  Giné: Conditions for the existence of a center for the Kukles homogeneous system.Comput. Math. Appl. 43 (2002), 1261–1269. MR 1906353, 10.1016/S0898-1221(02)00098-6
Reference: [8] I. S.  Gradshteyn, I. M.  Ryzhik: Tables of Series, Products and Integrals.Academic Press, San Diego, 1994. MR 1243179
Reference: [9] A.  Goriely: Integrability and Nonintegrability of Dynamical Systems.World Scientific Publishing, Singapore, 2001. Zbl 1002.34001, MR 1857742
Reference: [10] C.  Grosche, F.  Steiner: How to solve path integrals in quantum mechanics.J.  Math. Phys. 36 (1995), 2354–2385. MR 1329257, 10.1063/1.531043
Reference: [11] M.  Hayashi: On the local center of generalized Liénard-type systems.Far East J.  Math. Sci. (FJMS) 10 (2003), 265–283. Zbl 1052.34035, MR 2008415
Reference: [12] D.  Hilbert: Mathematical problems.Reprinted from Bull. Amer. Math. Soc. 8 (1902), 437–479. MR 1557926, 10.1090/S0002-9904-1902-00923-3
Reference: [13] P. D.  Lax: Integrals of nonlinear equations of evolution and solitary waves.Comm. Pure Appl. Math. 21 (1968), 467–490. Zbl 0162.41103, MR 0235310, 10.1002/cpa.3160210503
Reference: [14] Z.  Liu, E.  Sáez, and I.  Szántó: A cubic system with an invariant triangle surrounding at least one limit cycle.Taiwanese J.  Math. 7 (2003), 275–281. MR 1978016, 10.11650/twjm/1500575064
Reference: [15] R.  Milson: Liouville transformation and exactly solvable Schrödinger equations.Internat. J.  Theor. Phys. 37 (1998), 1735–1752. Zbl 0929.34075, MR 1646396, 10.1023/A:1026696709617
Reference: [16] M. J.  Prelle, M. F.  Singer: Elementary first integrals of differential equations.Trans. Am. Math. Soc. 279 (1983), 215–229. MR 0704611, 10.1090/S0002-9947-1983-0704611-X
Reference: [17] M. F.  Singer: Liouvillian first integrals of differential equations.Trans. Amer. Math. Soc. 333 (1992), 673–688. Zbl 0756.12006, MR 1062869, 10.1090/S0002-9947-1992-1062869-X
Reference: [18] J.-M.  Strelcyn, S.  Wojciechowski: A method of finding integrals for three-dimensional dynamical systems.Phys. Lett. A 133 (1988), 207–212. MR 0969750, 10.1016/0375-9601(88)91018-3
Reference: [19] A. G.  Ushveridze: Quasi-exactly Solvable Models in Quantum Mechanics.Institute of Physics Publishing, London, 1994. Zbl 0834.58042, MR 1329549
Reference: [20] F. J. Wright: Recognising and solving special function ODEs.Preprint (2000).
Reference: [21] C.-D.  Zhao, Q.-M.  He: On the center of the generalized Liénard system.Czechoslovak Math.  J. 52 (127) (2002), 817–832. Zbl 1021.34023, MR 1940062, 10.1023/B:CMAJ.0000027236.52900.55
.

Files

Files Size Format View
CzechMathJ_56-2006-3_18.pdf 323.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo