Previous |  Up |  Next

Article

Title: On the classes of hereditarily $\ell_p$ Banach spaces (English)
Author: Azimi, P.
Author: Ledari, A. A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 1001-1009
Summary lang: English
.
Category: math
.
Summary: Let $X$ denote a specific space of the class of $X_{\alpha ,p}$ Banach sequence spaces which were constructed by Hagler and the first named author as classes of hereditarily $\ell _p$ Banach spaces. We show that for $p>1$ the Banach space $X$ contains asymptotically isometric copies of $\ell _{p}$. It is known that any member of the class is a dual space. We show that the predual of $X$ contains isometric copies of $\ell _q$ where $\frac{1}{p}+\frac{1}{q}=1$. For $p=1$ it is known that the predual of the Banach space $X$ contains asymptotically isometric copies of $c_0$. Here we give a direct proof of the known result that $X$ contains asymptotically isometric copies of $\ell _1$. (English)
Keyword: Banach spaces
Keyword: asymptotically isometric copy of $\ell _p$
Keyword: hereditarily $\ell _p$ Banach spaces
MSC: 46B04
MSC: 46B20
MSC: 46B25
idZBL: Zbl 1164.46304
idMR: MR2261672
.
Date available: 2009-09-24T11:40:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128125
.
Reference: [1] P.  Azimi: A new class of Banach sequence spaces.Bull. Iranian Math. Soc. 28 (2002), 57–68. Zbl 1035.46006, MR 1992259
Reference: [2] P.  Azimi, J.  Hagler: Examples of hereditarily $\ell _{1}$ Banach spaces failing the Schur property.Pacific J.  Math. 122 (1986), 287–297. MR 0831114, 10.2140/pjm.1986.122.287
Reference: [3] S.  Chen, B.-L.  Lin: Dual action of asymptotically isometric copies of  $\ell _{p}$ ($1 \le p < \infty $) and $c_{0}$.Collect. Math. 48 (1997), 449–458. MR 1602639
Reference: [4] J.  Dilworth, M.  Girardi, and J.  Hagler: Dual Banach spaces which contains an isometric copy of  $L_{1}$.Bull. Polish Acad. Sci. 48 (2000), 1–12. MR 1751149
Reference: [5] P. N.  Dowling, C. J.  Lennard: Every nonreflexive subspace of  $L_1$ fails the fixed point property.Proc. Amer. Math. Soc. 125 (1997), 443–446. MR 1350940, 10.1090/S0002-9939-97-03577-6
Reference: [6] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces  I. Sequence Spaces.Springer Verlag, Berlin, 1977. MR 0500056
.

Files

Files Size Format View
CzechMathJ_56-2006-3_19.pdf 320.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo