| Title: | On the classes of hereditarily $\ell_p$ Banach spaces (English) | 
| Author: | Azimi, P. | 
| Author: | Ledari, A. A. | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 56 | 
| Issue: | 3 | 
| Year: | 2006 | 
| Pages: | 1001-1009 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $X$  denote a specific space of the class of  $X_{\alpha ,p}$ Banach sequence spaces which were constructed by Hagler and the first named author as classes of hereditarily $\ell _p$  Banach spaces. We show that for $p>1$ the Banach space  $X$ contains asymptotically isometric copies of  $\ell _{p}$. It is known that any member of the class is a dual space. We show that the predual of  $X$ contains isometric copies of  $\ell _q$ where $\frac{1}{p}+\frac{1}{q}=1$. For $p=1$ it is known that the predual of the Banach space  $X$ contains asymptotically isometric copies of  $c_0$. Here we give a direct proof of the known result that $X$  contains asymptotically isometric copies of  $\ell _1$. (English) | 
| Keyword: | Banach spaces | 
| Keyword: | asymptotically isometric copy of $\ell _p$ | 
| Keyword: | hereditarily $\ell _p$  Banach spaces | 
| MSC: | 46B04 | 
| MSC: | 46B20 | 
| MSC: | 46B25 | 
| idZBL: | Zbl 1164.46304 | 
| idMR: | MR2261672 | 
| . | 
| Date available: | 2009-09-24T11:40:40Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/128125 | 
| . | 
| Reference: | [1] P.  Azimi: A new class of Banach sequence spaces.Bull. Iranian Math. Soc. 28 (2002), 57–68. Zbl 1035.46006, MR 1992259 | 
| Reference: | [2] P.  Azimi, J.  Hagler: Examples of hereditarily $\ell _{1}$ Banach spaces failing the Schur property.Pacific J.  Math. 122 (1986), 287–297. MR 0831114, 10.2140/pjm.1986.122.287 | 
| Reference: | [3] S.  Chen, B.-L.  Lin: Dual action of asymptotically isometric copies of  $\ell _{p}$ ($1 \le p < \infty $) and $c_{0}$.Collect. Math. 48 (1997), 449–458. MR 1602639 | 
| Reference: | [4] J.  Dilworth, M.  Girardi, and J.  Hagler: Dual Banach spaces which contains an isometric copy of  $L_{1}$.Bull. Polish Acad. Sci. 48 (2000), 1–12. MR 1751149 | 
| Reference: | [5] P. N.  Dowling, C. J.  Lennard: Every nonreflexive subspace of  $L_1$ fails the fixed point property.Proc. Amer. Math. Soc. 125 (1997), 443–446. MR 1350940, 10.1090/S0002-9939-97-03577-6 | 
| Reference: | [6] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces  I. Sequence Spaces.Springer Verlag, Berlin, 1977. MR 0500056 | 
| . |