Previous |  Up |  Next

Article

Title: A note on local automorphisms (English)
Author: Fošner, Ajda
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 981-986
Summary lang: English
.
Category: math
.
Summary: Let $H$ be an infinite-dimensional almost separable Hilbert space. We show that every local automorphism of $\mathcal B(H)$, the algebra of all bounded linear operators on a Hilbert space $H$, is an automorphism. (English)
Keyword: automorphism
Keyword: local automorphism
Keyword: algebra of operators on a Hilbert space
MSC: 46L40
MSC: 47B48
idZBL: Zbl 1164.47334
idMR: MR2261670
.
Date available: 2009-09-24T11:40:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128123
.
Reference: [1] M.  Brešar, P.  Šemrl: On local automorphisms and mappings that preserve idempotents.Studia Math. 113 (1995), 101–108. MR 1318418, 10.4064/sm-113-2-101-108
Reference: [2] M.  Eidelheit: On isomorphisms of rings of linear operators.Studia Math. 9 (1940), 97–105. Zbl 0061.25301, MR 0004725, 10.4064/sm-9-1-97-105
Reference: [3] P. A.  Fillmore, W. E.  Longstaff: On isomorphisms of lattices of closed subspaces.Canad. J.  Math. 36 (1984), 820–829. MR 0762744, 10.4153/CJM-1984-048-x
Reference: [4] N.  Jacobson, C.  Rickart: Jordan homomorphisms of rings.Trans. Amer. Math. Soc. 69 (1950), 479–502. MR 0038335, 10.1090/S0002-9947-1950-0038335-X
Reference: [5] D.  Larson, A. R.  Sourour: Local derivations and local automorphisms of  ${B}(X)$.Proc. Symp. Pure Math. 51 (1990), 187–194. MR 1077437
Reference: [6] C.  Pearcy, D.  Topping: Sums of small numbers of idempotents.Michigan Math.  J. 14 (1967), 453–465. MR 0218922, 10.1307/mmj/1028999848
.

Files

Files Size Format View
CzechMathJ_56-2006-3_17.pdf 288.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo