Previous |  Up |  Next

Article

Title: On the maximal subgroup of the sandwich semigroup of generalized circulant Boolean matrices (English)
Author: Chen, Jinsong
Author: Tan, Yijia
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 4
Year: 2006
Pages: 1117-1129
Summary lang: English
.
Category: math
.
Summary: Let $n$ be a positive integer, and $C_{n} (r)$ the set of all $n\times n$ $r$-circulant matrices over the Boolean algebra $B=\lbrace 0,1\rbrace $, $G_{n}=\bigcup _{r=0}^{n-1}C_{n}(r)$. For any fixed $r$-circulant matrix $C$ ($C\ne 0$) in $G_{n}$, we define an operation “$\ast $” in $G_{n}$ as follows: $A\ast B=ACB$ for any $A,B$ in $G_{n}$, where $ACB$ is the usual product of Boolean matrices. Then $(G_{n},\ast )$ is a semigroup. We denote this semigroup by $G_{n}(C)$ and call it the sandwich semigroup of generalized circulant Boolean matrices with sandwich matrix $C$. Let $F$ be an idempotent element in $G_{n}(C)$ and $M(F)$ the maximal subgroup in $G_{n}(C)$ containing the idempotent element $F$. In this paper, the elements in $M(F)$ are characterized and an algorithm to determine all the elements in $M(F)$ is given. (English)
Keyword: generalized ciculant Boolean matrix
Keyword: sandwich semigroup
Keyword: idempotent element
Keyword: maximal subgroup
MSC: 06F30
MSC: 15A33
MSC: 15A36
idZBL: Zbl 1164.15323
idMR: MR2280798
.
Date available: 2009-09-24T11:41:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128134
.
Reference: [1] C.-Y.  Chao, M.-C.  Zhang: On generalized circulants over a Boolean algebra.Linear Algebra Appl. 62 (1984), 195–206. MR 0761067, 10.1016/0024-3795(84)90095-8
Reference: [2] W.-C.  Huang: On the sandwich semigroups of circulant Boolean matrices.Linear Algebra Appl. 179 (1993), 135–160. Zbl 0768.20031, MR 1200148
Reference: [3] Mou-Chen Zhang: On the maximal subgroup of the semigroup of generalized circulant Boolean matrices.Linear Algebra Appl. 151 (1991), 229–243. MR 1102151
Reference: [4] A. H. Clifford, G. B. Preston: The Algebra Theory of Semigroups, Vol.  1.Amer. Math. Soc., Providence, 1961. MR 0132791
Reference: [5] J. S. Montague, R. J. Plemmons: Maximal subgroup of semigroup of relations.J. Algebra 13 (1969), 575–587. MR 0252539
Reference: [6 K.-H. Kim, S. Schwarz] : The semigroup of circulant Boolean matrices.Czechoslovak Math. J. 26(101) (1976), 632–635. Zbl 0347.20037, MR 0430121
Reference: [7] J.-S. Chen, Y.-J.  Tan: The idempotent elements in the sandwich semigroup of generalized elements Boolean mareices.J.  Fuzhou Univ. Nat. Sci. 31 (2003), 505–509. MR 2023977
Reference: [8] K. Ireland, M.  Rosen: A Classical Introduction to Modern Number Theory.Springer-Verlag, New York, 1982. MR 0661047
.

Files

Files Size Format View
CzechMathJ_56-2006-4_4.pdf 359.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo