Title:
|
On the maximal subgroup of the sandwich semigroup of generalized circulant Boolean matrices (English) |
Author:
|
Chen, Jinsong |
Author:
|
Tan, Yijia |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
4 |
Year:
|
2006 |
Pages:
|
1117-1129 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $n$ be a positive integer, and $C_{n} (r)$ the set of all $n\times n$ $r$-circulant matrices over the Boolean algebra $B=\lbrace 0,1\rbrace $, $G_{n}=\bigcup _{r=0}^{n-1}C_{n}(r)$. For any fixed $r$-circulant matrix $C$ ($C\ne 0$) in $G_{n}$, we define an operation “$\ast $” in $G_{n}$ as follows: $A\ast B=ACB$ for any $A,B$ in $G_{n}$, where $ACB$ is the usual product of Boolean matrices. Then $(G_{n},\ast )$ is a semigroup. We denote this semigroup by $G_{n}(C)$ and call it the sandwich semigroup of generalized circulant Boolean matrices with sandwich matrix $C$. Let $F$ be an idempotent element in $G_{n}(C)$ and $M(F)$ the maximal subgroup in $G_{n}(C)$ containing the idempotent element $F$. In this paper, the elements in $M(F)$ are characterized and an algorithm to determine all the elements in $M(F)$ is given. (English) |
Keyword:
|
generalized ciculant Boolean matrix |
Keyword:
|
sandwich semigroup |
Keyword:
|
idempotent element |
Keyword:
|
maximal subgroup |
MSC:
|
06F30 |
MSC:
|
15A33 |
MSC:
|
15A36 |
idZBL:
|
Zbl 1164.15323 |
idMR:
|
MR2280798 |
. |
Date available:
|
2009-09-24T11:41:35Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128134 |
. |
Reference:
|
[1] C.-Y. Chao, M.-C. Zhang: On generalized circulants over a Boolean algebra.Linear Algebra Appl. 62 (1984), 195–206. MR 0761067, 10.1016/0024-3795(84)90095-8 |
Reference:
|
[2] W.-C. Huang: On the sandwich semigroups of circulant Boolean matrices.Linear Algebra Appl. 179 (1993), 135–160. Zbl 0768.20031, MR 1200148 |
Reference:
|
[3] Mou-Chen Zhang: On the maximal subgroup of the semigroup of generalized circulant Boolean matrices.Linear Algebra Appl. 151 (1991), 229–243. MR 1102151 |
Reference:
|
[4] A. H. Clifford, G. B. Preston: The Algebra Theory of Semigroups, Vol. 1.Amer. Math. Soc., Providence, 1961. MR 0132791 |
Reference:
|
[5] J. S. Montague, R. J. Plemmons: Maximal subgroup of semigroup of relations.J. Algebra 13 (1969), 575–587. MR 0252539 |
Reference:
|
[6 K.-H. Kim, S. Schwarz] : The semigroup of circulant Boolean matrices.Czechoslovak Math. J. 26(101) (1976), 632–635. Zbl 0347.20037, MR 0430121 |
Reference:
|
[7] J.-S. Chen, Y.-J. Tan: The idempotent elements in the sandwich semigroup of generalized elements Boolean mareices.J. Fuzhou Univ. Nat. Sci. 31 (2003), 505–509. MR 2023977 |
Reference:
|
[8] K. Ireland, M. Rosen: A Classical Introduction to Modern Number Theory.Springer-Verlag, New York, 1982. MR 0661047 |
. |