Previous |  Up |  Next

Article

Title: Pasting topological spaces at one point (English)
Author: Aliabad, Ali Rezaei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 4
Year: 2006
Pages: 1193-1206
Summary lang: English
.
Category: math
.
Summary: Let $\lbrace X_\alpha \rbrace _{\alpha \in \Lambda }$ be a family of topological spaces and $x_{\alpha }\in X_{\alpha }$, for every $\alpha \in \Lambda $. Suppose $X$ is the quotient space of the disjoint union of $X_\alpha $’s by identifying $x_\alpha $’s as one point $\sigma $. We try to characterize ideals of $C(X)$ according to the same ideals of $C(X_\alpha )$’s. In addition we generalize the concept of rank of a point, see [9], and then answer the following two algebraic questions. Let $m$ be an infinite cardinal. (1) Is there any ring $R$ and $I$ an ideal in $R$ such that $I$ is an irreducible intersection of $m$ prime ideals? (2) Is there any set of prime ideals of cardinality $m$ in a ring $R$ such that the intersection of these prime ideals can not be obtained as an intersection of fewer than $m$ prime ideals in $R$? Finally, we answer an open question in [11]. (English)
Keyword: pasting topological spaces at one point
Keyword: rings of continuous (bounded) real functions on $X$
Keyword: $z$-ideal
Keyword: $z^\circ $-ideal
Keyword: $C$-embedded
Keyword: $P$-space
Keyword: $F$-space.
MSC: 54B15
MSC: 54C40
MSC: 54C45
MSC: 54G05
MSC: 54G10
idZBL: Zbl 1164.54338
idMR: MR2280803
.
Date available: 2009-09-24T11:42:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128139
.
Reference: [1] A. R. Aliabad: $z^\circ $-ideals in  $C(X)$.PhD. Thesis, 1996.
Reference: [2] F. Azarpanah, O. A. S. Karamzadeh, and A.  Rezaei Aliabad: On ideals consisting entirely of zero divisors.Comm. Algebra 28 (2000), 1061–1073. MR 1736781, 10.1080/00927870008826878
Reference: [3] F.  Azarpanah, O, A. S.  Karamzadeh, and A.  Rezaei Aliabad: On $z^o-ideals$ in  $C(X)$.Fundamenta Math. 160 (1999), 15–25. MR 1694400
Reference: [4] F. Azarpanah, O. A. S.  Karamzadeh: Algebraic characterizations of some disconnected spaces.Italian  J.  Pure Appl. Math. 10 (2001), 9–20. MR 1962109
Reference: [5] R. Engelking: General Topology.PWN—Polish Scientific Publishing, , 1977. Zbl 0373.54002, MR 0500780
Reference: [6] A. A. Estaji, O, A. S.  Karamzadeh: On $C(X)$ modulo its socle.Comm. Algebra 31 (2003), 1561–1571. MR 1972881, 10.1081/AGB-120018497
Reference: [7] L. Gillman, M.  Jerison: Rings of Continuous Functions.Van Nostrand Reinhold, New York, 1960. MR 0116199
Reference: [8] M. Henriksen, R. G. Wilson: Almost discrete $SV$-space.Topology and its Application 46 (1992), 89–97. MR 1184107
Reference: [9] M. Henriksen, S.  Larson, J. Martinez, and R. G. Woods: Lattice-ordered algebras that are subdirect products of valuation domains.Trans. Amer. Math. Soc. 345 (1994), 195–221. MR 1239640, 10.1090/S0002-9947-1994-1239640-0
Reference: [10] O. A. S.  Karamzadeh, M.  Rostami: On the intrinsic topology and some related ideals of  $C(X)$.Proc. Amer. Math. Soc. 93 (1985), 179–184. MR 0766552
Reference: [11] S. Larson: $f$-rings in which every maximal ideal contains finitely many prime ideals.Comm. Algebra 25 (1997), 3859–3888. MR 1481572, 10.1080/00927879708826092
Reference: [12] R. Levy: Almost $P$-spaces.Can. J.  Math. 2 (1977), 284–288. Zbl 0342.54032, MR 0464203
Reference: [13] S. Willard: General Topology.Addison Wesley, Reading, 1970. Zbl 0205.26601, MR 0264581
.

Files

Files Size Format View
CzechMathJ_56-2006-4_9.pdf 369.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo