Previous |  Up |  Next

Article

Title: Samuel compactification and uniform coreflection of nearness $\sigma$-frames (English)
Author: Naidoo, Inderasan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 4
Year: 2006
Pages: 1229-1241
Summary lang: English
.
Category: math
.
Summary: We introduce the structure of a nearness on a $\sigma $-frame and construct the coreflection of the category ${\mathbf N\sigma Frm}$ of nearness $\sigma $-frames to the category ${\mathbf KReg\sigma Frm}$ of compact regular $\sigma $-frames. This description of the Samuel compactification of a nearness $\sigma $-frame is in analogy to the construction by Baboolal and Ori for nearness frames in [1] and that of Walters for uniform $\sigma $-frames in [11]. We also construct the uniform coreflection of a nearness $\sigma $-frame, that is, the coreflection of the category of ${\mathbf N\sigma Frm}$ to the category U$\sigma $Frm of uniform $\sigma $-frames. (English)
Keyword: $\sigma $-frame
Keyword: nearness
Keyword: Samuel compactification
MSC: 06D22
MSC: 18B35
MSC: 54D35
MSC: 54E17
idZBL: Zbl 1164.06312
idMR: MR2280806
.
Date available: 2009-09-24T11:42:30Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128142
.
Reference: [1] D. Baboolal, R. G. Ori: Samuel Compactification and Uniform Coreflection of Nearness Frames. Proc. Symp. on Categorical Topology.University of Cape Town, Cape Town, 1994. MR 1722563
Reference: [2] B. Banaschewski: $\sigma $-Frames.Unpublished manuscript. Zbl 0675.06005
Reference: [3] B. Banaschewski: The frame envelope of a $\sigma $-frame.Quaest. Math. 16 (1993), 51–60. Zbl 0779.06009, MR 1217474
Reference: [4] B. Banaschewski: Completion in pointfree topology.Lecture Notes in Math. and Applied Math, Univ. of Cape Town, SoCat 94, No2/1996. Zbl 1034.06008, MR 1621835
Reference: [5] B. Banaschewski, C.  Gilmour: Stone-Čech compactification and dimension theory for regular $\sigma $-frames.J.  London Math. Soc. 39 (1989), 1–8. MR 0989914
Reference: [6] B. Banaschewski, A.  Pultr: Samuel compactification and completion of uniform frames.Math. Proc. Camb. Phil. Soc. 108 (1990), 63–78. MR 1049760, 10.1017/S030500410006895X
Reference: [7] B. Banaschewski, A.  Pultr: Cauchy points of uniform and nearness frames.Quaest. Math. 19 (1996), 101–127. MR 1390475, 10.1080/16073606.1996.9631828
Reference: [8] P. T. Johnstone: Stone Spaces. Cambridge Studies in Advanced Math. No.  3.Cambridge University Press, Cambridge, 1982. MR 0698074
Reference: [9] J. J. Madden: $\kappa $-frames.J.  Pure Appl. Algebra 70 (1991), 107–127. Zbl 0721.06006, MR 1100510
Reference: [10] I. Naidoo: Nearness and convergence in pointfree topology.PhD.  Thesis, University of Cape Town, Cape Town, 2004.
Reference: [11] J. L. Walters: Uniform sigma frames and the cozero part of uniform frames.Masters Dissertation, University of Cape Town, Cape Town, 1990.
Reference: [12] J. L. Walters: Compactifications and uniformities on $\sigma $-frames.Comm. Math. Univ. Carolinae 32 (1991), 189–198. Zbl 0735.54014, MR 1118301
Reference: [13] J. L. Walters-Wayland: Completeness and nearly fine uniform frames.PhD.  Thesis, Univ. Catholique de Louvain, Louvain, 1996.
.

Files

Files Size Format View
CzechMathJ_56-2006-4_12.pdf 380.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo