Previous |  Up |  Next

Article

Title: Nodal solutions for a second-order $m$-point boundary value problem (English)
Author: Ma, Ruyun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 4
Year: 2006
Pages: 1243-1263
Summary lang: English
.
Category: math
.
Summary: We study the existence of nodal solutions of the $m$-point boundary value problem \[ u^{\prime \prime }+ f(u)=0, \quad 0<t<1, u^{\prime }(0)=0, \quad u(1)=\sum ^{m-2}_{i=1} \alpha _i u(\eta _i) \] where $\eta _i\in \mathbb{Q}$ $(i=1, 2, \cdots , m-2)$ with $0<\eta _1<\eta _2<\cdots <\eta _{m-2}<1$, and $\alpha _i\in \mathbb{R}$ $(i=1, 2, \cdots , m-2)$ with $\alpha _i>0$ and $0<\sum \nolimits ^{m-2}_{i=1} \alpha _i < 1$. We give conditions on the ratio $f(s)/s$ at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques. (English)
Keyword: multiplicity results
Keyword: eigenvalues
Keyword: bifurcation methods
Keyword: nodal zeros
Keyword: multi-point boundary value problems
MSC: 34B10
MSC: 34C23
MSC: 34G20
MSC: 34L20
MSC: 47J15
MSC: 47N20
idZBL: Zbl 1164.34329
idMR: MR2280807
.
Date available: 2009-09-24T11:42:37Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128143
.
Reference: [1] A.  Ambrosetti, P.  Hess: Positive solutions of asymptotically linear elliptic eigenvalue problems.J.  Math. Anal. Appl. 73 (1980), 411–422. MR 0563992, 10.1016/0022-247X(80)90287-5
Reference: [2] A.  Castro, P.  Drábek, J. M.  Neuberger: A sign-changing solution for a superlinear Dirichlet problem.  II.Proceedings of the Fifth Mississippi State Conference on Differential Equations and Computational Simulations (Mississippi State, MS, 2001), pp. 101–107. MR 1976635
Reference: [3] L. H. Erbe, H.  Wang: On the existence of positive solutions of ordinary differential equations.Proc. Amer. Math. Soc. 120 (1994), 743–748. MR 1204373, 10.1090/S0002-9939-1994-1204373-9
Reference: [4] R.  Ma: Existence of positive solutions for superlinear semipositone $m$-point boundary-value problems.Proc. Edin. Math. Soc. 46 (2003), 279–292. Zbl 1069.34036, MR 1998561, 10.1017/S0013091502000391
Reference: [5] R.  Ma, B.  Thompson: Nodal solutions for nonlinear eigenvalue problems.Nonlinear Analysis, Theory Methods Appl. 59 (2004), 717–718. MR 2096325
Reference: [6] Y.  Naito, S.  Tanaka: On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations.Nonlinear Analysis TMA 56 (2004), 919–935. MR 2036055, 10.1016/j.na.2003.10.020
Reference: [7] P. H. Rabinowitz: Some global results for nonlinear eigenvalue problems.J.  Funct. Anal. 7 (1971), 487–513. Zbl 0212.16504, MR 0301587, 10.1016/0022-1236(71)90030-9
Reference: [8] I.  Rachůnková: On four-point boundary value problem without growth conditions.Czechoslovak Math.  J. 49 (1999), 241–248. MR 1692485, 10.1023/A:1022491900369
Reference: [9] B. Ruf, P. N.  Srikanth: Multiplicity results for ODEs with nonlinearities crossing all but a finite number of eigenvalues.Nonlinear Analysis TMA 10 (1986), 157–163. MR 0825214, 10.1016/0362-546X(86)90043-X
Reference: [10] B. P.  Rynne: Global bifurcation for $2m$th-order boundary value problems and infinity many solutions of superlinear problems.J.  Differential Equations 188 (2003), 461–472. MR 1954290, 10.1016/S0022-0396(02)00146-8
Reference: [11] J. R.  Webb: Positive solutions of some three-point boundary value problems via fixed point index theory.Nonlinear Analysis 47 (2001), 4319–4332. Zbl 1042.34527, MR 1975828, 10.1016/S0362-546X(01)00547-8
Reference: [12] X. Xu: Multiple sign-changing solutions for some $m$-point boundary value problems.Electronic Journal of Differential Equations 89 (2004), 1–14. Zbl 1058.34013, MR 2075428
.

Files

Files Size Format View
CzechMathJ_56-2006-4_13.pdf 393.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo