| Title: | Nodal solutions for a second-order $m$-point boundary value problem (English) | 
| Author: | Ma, Ruyun | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 56 | 
| Issue: | 4 | 
| Year: | 2006 | 
| Pages: | 1243-1263 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We study the existence of nodal solutions of the $m$-point boundary value problem \[ u^{\prime \prime }+ f(u)=0, \quad 0<t<1, u^{\prime }(0)=0, \quad u(1)=\sum ^{m-2}_{i=1} \alpha _i u(\eta _i) \] where $\eta _i\in \mathbb{Q}$ $(i=1, 2, \cdots , m-2)$ with $0<\eta _1<\eta _2<\cdots <\eta _{m-2}<1$, and $\alpha _i\in \mathbb{R}$ $(i=1, 2, \cdots , m-2)$ with $\alpha _i>0$ and $0<\sum \nolimits ^{m-2}_{i=1} \alpha _i < 1$. We give conditions on the ratio $f(s)/s$ at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques. (English) | 
| Keyword: | multiplicity results | 
| Keyword: | eigenvalues | 
| Keyword: | bifurcation methods | 
| Keyword: | nodal zeros | 
| Keyword: | multi-point boundary value problems | 
| MSC: | 34B10 | 
| MSC: | 34C23 | 
| MSC: | 34G20 | 
| MSC: | 34L20 | 
| MSC: | 47J15 | 
| MSC: | 47N20 | 
| idZBL: | Zbl 1164.34329 | 
| idMR: | MR2280807 | 
| . | 
| Date available: | 2009-09-24T11:42:37Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/128143 | 
| . | 
| Reference: | [1] A.  Ambrosetti, P.  Hess: Positive solutions of asymptotically linear elliptic eigenvalue problems.J.  Math. Anal. Appl. 73 (1980), 411–422. MR 0563992, 10.1016/0022-247X(80)90287-5 | 
| Reference: | [2] A.  Castro, P.  Drábek, J. M.  Neuberger: A sign-changing solution for a superlinear Dirichlet problem.  II.Proceedings of the Fifth Mississippi State Conference on Differential Equations and Computational Simulations (Mississippi State, MS, 2001), pp. 101–107. MR 1976635 | 
| Reference: | [3] L. H. Erbe, H.  Wang: On the existence of positive solutions of ordinary differential equations.Proc. Amer. Math. Soc. 120 (1994), 743–748. MR 1204373, 10.1090/S0002-9939-1994-1204373-9 | 
| Reference: | [4] R.  Ma: Existence of positive solutions for superlinear semipositone $m$-point boundary-value problems.Proc. Edin. Math. Soc. 46 (2003), 279–292. Zbl 1069.34036, MR 1998561, 10.1017/S0013091502000391 | 
| Reference: | [5] R.  Ma, B.  Thompson: Nodal solutions for nonlinear eigenvalue problems.Nonlinear Analysis, Theory Methods Appl. 59 (2004), 717–718. MR 2096325 | 
| Reference: | [6] Y.  Naito, S.  Tanaka: On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations.Nonlinear Analysis TMA 56 (2004), 919–935. MR 2036055, 10.1016/j.na.2003.10.020 | 
| Reference: | [7] P. H. Rabinowitz: Some global results for nonlinear eigenvalue problems.J.  Funct. Anal. 7 (1971), 487–513. Zbl 0212.16504, MR 0301587, 10.1016/0022-1236(71)90030-9 | 
| Reference: | [8] I.  Rachůnková: On four-point boundary value problem without growth conditions.Czechoslovak Math.  J. 49 (1999), 241–248. MR 1692485, 10.1023/A:1022491900369 | 
| Reference: | [9] B. Ruf, P. N.  Srikanth: Multiplicity results for ODEs with nonlinearities crossing all but a finite number of eigenvalues.Nonlinear Analysis TMA 10 (1986), 157–163. MR 0825214, 10.1016/0362-546X(86)90043-X | 
| Reference: | [10] B. P.  Rynne: Global bifurcation for $2m$th-order boundary value problems and infinity many solutions of superlinear problems.J.  Differential Equations 188 (2003), 461–472. MR 1954290, 10.1016/S0022-0396(02)00146-8 | 
| Reference: | [11] J. R.  Webb: Positive solutions of some three-point boundary value problems via fixed point index theory.Nonlinear Analysis 47 (2001), 4319–4332. Zbl 1042.34527, MR 1975828, 10.1016/S0362-546X(01)00547-8 | 
| Reference: | [12] X. Xu: Multiple sign-changing solutions for some $m$-point boundary value problems.Electronic Journal of Differential Equations 89 (2004), 1–14. Zbl 1058.34013, MR 2075428 | 
| . |