[1] J. Bourgain: 
New classes of ${L}_p$-spaces. Lecture Notes in Math. vol. 889, Springer, Berlin, 1981. 
MR 0639014[3] F. Cabello, D. Pérez-García and I. Villanueva: 
Unexpected subspaces of tensor products. J. London Math. Soc. 74 (2006), 512–526. 
MR 2269592[4] J. M. F. Castillo: 
On Banach spaces $X$ such that ${\mathcal{L}}(L_p,X)={\mathcal{K}}(L_p,X)$. Extracta Math. 10 (1995), 27–36. 
MR 1359589[5] A. Defant and K. Floret: 
Tensor Norms and Operator Ideals. Math. Studies 176, North-Holland, Amsterdam, 1993. 
MR 1209438[6] J. Diestel: 
A survey of results related to the Dunford-Pettis property. In: W. H. Graves (ed.), Proc. Conf. on Integration, Topology and Geometry in Linear Spaces, Chapel Hill 1979, Contemp. Math. 2, 15–60, American Mathematical Society, Providence RI, 1980. 
MR 0621850 | 
Zbl 0571.46013[7] J. Diestel: 
Sequences and Series in Banach Spaces. Graduate Texts in Math. 92, Springer, Berlin, 1984. 
MR 0737004[8] J. Diestel, H. Jarchow and A. Tonge: 
Absolutely Summing Operators. Cambridge Stud. Adv. Math. 43, Cambridge University Press, Cambridge, 1995. 
MR 1342297[9] J. Diestel and J. J. Uhl, Jr.: 
Vector Measures. Math. Surveys Monographs 15, American Mathematical Society, Providence RI, 1977. 
MR 0453964[10] E. Dubinsky, A. Pełczyński and H. P. Rosenthal: 
On Banach spaces $X$ for which $\Pi _2({L}_\infty ,X)=B({L}_\infty ,X)$. Studia Math. 44 (1972), 617–648. 
MR 0365097[11] M. González and J. M. Gutiérrez: 
The Dunford-Pettis property on tensor products. Math. Proc. Cambridge Philos. Soc. 131 (2001), 185–192. 
MR 1833082[13] J. Lindenstrauss and A. Pełczyński: 
Absolutely summing operators in ${L}_p$-spaces and their applications. Studia Math. 29 (1968), 275–326. 
DOI 10.4064/sm-29-3-275-326 | 
MR 0231188[14] J. Lindenstrauss and H. P. Rosenthal: 
The ${L}_p$-spaces. Israel J. Math. 7 (1969), 325–349. 
MR 0270119[17] R. A. Ryan: 
The Dunford-Pettis property and projective tensor products. Bull. Polish Acad. Sci. Math. 35 (1987), 785–792. 
MR 0961717 | 
Zbl 0656.46057