Previous |  Up |  Next

Article

Title: Complemented copies of $\ell_p$ spaces in tensor products (English)
Author: Cilia, Raffaella
Author: Gutiérrez, Joaquín M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 319-329
Summary lang: English
.
Category: math
.
Summary: We give sufficient conditions on Banach spaces $X$ and $Y$ so that their projective tensor product $X\otimes _\pi Y$, their injective tensor product $X\otimes _\epsilon Y$, or the dual $(X\otimes _\pi Y)^*$ contain complemented copies of $\ell _p$. (English)
Keyword: $\ell _p$ space
Keyword: injective and projective tensor product
MSC: 46B20
MSC: 46B28
idZBL: Zbl 1174.46009
idMR: MR2309967
.
Date available: 2009-09-24T11:45:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128173
.
Reference: [1] J. Bourgain: New classes of ${L}_p$-spaces. Lecture Notes in Math.vol. 889, Springer, Berlin, 1981. MR 0639014
Reference: [2] J. Bourgain: New Banach space properties of the disc algebra and $H^\infty $.Acta Math. 152 (1984), 1–48. MR 0736210, 10.1007/BF02392189
Reference: [3] F. Cabello, D. Pérez-García and I. Villanueva: Unexpected subspaces of tensor products.J. London Math. Soc. 74 (2006), 512–526. MR 2269592
Reference: [4] J. M. F. Castillo: On Banach spaces $X$ such that ${\mathcal{L}}(L_p,X)={\mathcal{K}}(L_p,X)$.Extracta Math. 10 (1995), 27–36. MR 1359589
Reference: [5] A. Defant and K. Floret: Tensor Norms and Operator Ideals.Math. Studies 176, North-Holland, Amsterdam, 1993. MR 1209438
Reference: [6] J. Diestel: A survey of results related to the Dunford-Pettis property.In: W. H. Graves (ed.), Proc. Conf. on Integration, Topology and Geometry in Linear Spaces, Chapel Hill 1979, Contemp. Math. 2, 15–60, American Mathematical Society, Providence RI, 1980. Zbl 0571.46013, MR 0621850
Reference: [7] J. Diestel: Sequences and Series in Banach Spaces.Graduate Texts in Math. 92, Springer, Berlin, 1984. MR 0737004
Reference: [8] J. Diestel, H. Jarchow and A. Tonge: Absolutely Summing Operators.Cambridge Stud. Adv. Math. 43, Cambridge University Press, Cambridge, 1995. MR 1342297
Reference: [9] J. Diestel and J. J. Uhl, Jr.: Vector Measures.Math. Surveys Monographs 15, American Mathematical Society, Providence RI, 1977. MR 0453964
Reference: [10] E. Dubinsky, A. Pełczyński and H. P. Rosenthal: On Banach spaces $X$ for which $\Pi _2({L}_\infty ,X)=B({L}_\infty ,X)$.Studia Math. 44 (1972), 617–648. MR 0365097
Reference: [11] M. González and J. M. Gutiérrez: The Dunford-Pettis property on tensor products.Math. Proc. Cambridge Philos. Soc. 131 (2001), 185–192. MR 1833082
Reference: [12] J. M. Gutiérrez: Complemented copies of $\ell _2$ in spaces of integral operators.Glasgow Math. J. 47 (2005), 287–290. MR 2203495, 10.1017/S0017089505002491
Reference: [13] J. Lindenstrauss and A. Pełczyński: Absolutely summing operators in ${L}_p$-spaces and their applications.Studia Math. 29 (1968), 275–326. MR 0231188, 10.4064/sm-29-3-275-326
Reference: [14] J. Lindenstrauss and H. P. Rosenthal: The ${L}_p$-spaces.Israel J. Math. 7 (1969), 325–349. MR 0270119
Reference: [15] F. Lust: Produits tensoriels injectifs d’espaces de Sidon.Colloq. Math. 32 (1975), 285–289. Zbl 0306.46026, MR 0390794, 10.4064/cm-32-2-285-289
Reference: [16] H. P. Rosenthal: Point-wise compact subsets of the first Baire class.Amer. J. Math. 99 (1977), 362–378. Zbl 0392.54009, MR 0438113, 10.2307/2373824
Reference: [17] R. A. Ryan: The Dunford-Pettis property and projective tensor products.Bull. Polish Acad. Sci. Math. 35 (1987), 785–792. Zbl 0656.46057, MR 0961717
Reference: [18] M. Talagrand: Cotype of operators from $C(K)$.Invent. Math. 107 (1992), 1–40. Zbl 0788.47022, MR 1135462, 10.1007/BF01231879
.

Files

Files Size Format View
CzechMathJ_57-2007-1_24.pdf 355.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo