Title:
|
Even periodic solutions of higher order duffing differential equations (English) |
Author:
|
Wang, Genqiang |
Author:
|
Cheng, Sui Sun |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
331-343 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
By using Mawhin’s continuation theorem, the existence of even solutions with minimum positive period for a class of higher order nonlinear Duffing differential equations is studied. (English) |
Keyword:
|
high order Duffing equation |
Keyword:
|
even periodic solution |
Keyword:
|
continuation theorem |
MSC:
|
34C25 |
MSC:
|
34K15 |
idZBL:
|
Zbl 1174.34037 |
idMR:
|
MR2309968 |
. |
Date available:
|
2009-09-24T11:45:59Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128174 |
. |
Reference:
|
[1] F. Nakajima: Even and periodic solutions of the equation $u^{\prime \prime }+g( u) =e( t)$.J. Diff. Equations 83 (1990), 277–299. MR 1033189 |
Reference:
|
[2] T. R. Ding: Nonlinear oscillations at a point of resonance.Sci. Sinica Ser. A 25 (1982), 918–931. Zbl 0509.34043, MR 0681856 |
Reference:
|
[3] P. Omari, P. Zanolin: A note on nonliner oscillations at resonance.Acta Math. Sinica 3 (1987), 351–361. MR 0930765, 10.1007/BF02559915 |
Reference:
|
[4] X. K. Huang, Z. G. Xiang: On the existence of $2\pi $-periodic solution for delay Duffing equation $x^{\prime \prime }(t) +g( x( t-r)) =p( t)$.Chinese Science Bulletin 39 (1994), 201–203. |
Reference:
|
[5] W. S. Loud: Periodic solutions of nonlinear differential equation of Duffing types.In: Differential and Functional Equations, Benjami, New York, 1967, pp. 199–224. MR 0223656 |
Reference:
|
[6] W. B. Liu: The Existence of periodic solutions for high order Duffing equations.Acta Math. Sinica 46 (2003), 49–56. Zbl 1036.34052, MR 1971712 |
Reference:
|
[7] R. E. Gaines, J. L. Mawhin: Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Math. Vol. 586.Springer-Verlag, Berlin, New York, 1977. MR 0637067 |
. |