Previous |  Up |  Next

Article

Title: Even periodic solutions of higher order duffing differential equations (English)
Author: Wang, Genqiang
Author: Cheng, Sui Sun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 331-343
Summary lang: English
.
Category: math
.
Summary: By using Mawhin’s continuation theorem, the existence of even solutions with minimum positive period for a class of higher order nonlinear Duffing differential equations is studied. (English)
Keyword: high order Duffing equation
Keyword: even periodic solution
Keyword: continuation theorem
MSC: 34C25
MSC: 34K15
idZBL: Zbl 1174.34037
idMR: MR2309968
.
Date available: 2009-09-24T11:45:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128174
.
Reference: [1] F.  Nakajima: Even and periodic solutions of the equation $u^{\prime \prime }+g( u) =e( t)$.J.  Diff. Equations 83 (1990), 277–299. MR 1033189
Reference: [2] T. R.  Ding: Nonlinear oscillations at a point of resonance.Sci. Sinica Ser.  A 25 (1982), 918–931. Zbl 0509.34043, MR 0681856
Reference: [3] P.  Omari, P.  Zanolin: A note on nonliner oscillations at resonance.Acta Math. Sinica 3 (1987), 351–361. MR 0930765, 10.1007/BF02559915
Reference: [4] X. K.  Huang, Z. G.  Xiang: On the existence of $2\pi $-periodic solution for delay Duffing equation $x^{\prime \prime }(t) +g( x( t-r)) =p( t)$.Chinese Science Bulletin 39 (1994), 201–203.
Reference: [5] W. S.  Loud: Periodic solutions of nonlinear differential equation of Duffing types.In: Differential and Functional Equations, Benjami, New York, 1967, pp. 199–224. MR 0223656
Reference: [6] W. B.  Liu: The Existence of periodic solutions for high order Duffing equations.Acta Math. Sinica 46 (2003), 49–56. Zbl 1036.34052, MR 1971712
Reference: [7] R. E.  Gaines, J. L.  Mawhin: Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Math. Vol.  586.Springer-Verlag, Berlin, New York, 1977. MR 0637067
.

Files

Files Size Format View
CzechMathJ_57-2007-1_25.pdf 332.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo