Previous |  Up |  Next

Article

Title: Approach regions for the square root of the Poisson kernel and boundary functions in certain Orlicz spaces (English)
Author: Brundin, M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 345-365
Summary lang: English
.
Category: math
.
Summary: If the Poisson integral of the unit disc is replaced by its square root, it is known that normalized Poisson integrals of $L^{p}$ and weak $L^{p}$ boundary functions converge along approach regions wider than the ordinary nontangential cones, as proved by Rönning and the author, respectively. In this paper we characterize the approach regions for boundary functions in two general classes of Orlicz spaces. The first of these classes contains spaces $L^{\Phi }$ having the property $L^{\infty }\subset L^{\Phi }\subset L^{p}$, $1\le p<\infty $. The second contains spaces $L^{\Phi }$ that resemble $L^{p}$ spaces. (English)
Keyword: square root of the Poisson kernel
Keyword: approach regions
Keyword: almost everywhere convergence
Keyword: maximal functions
Keyword: Orlicz spaces
MSC: 42A99
MSC: 42B25
MSC: 43A85
MSC: 46E30
idZBL: Zbl 1174.42315
idMR: MR2309969
.
Date available: 2009-09-24T11:46:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128175
.
Reference: [1] H. Aikawa: Harmonic functions having no tangential limits.Proc. Am. Math. Soc. 108 (1990), 457–464. Zbl 0694.31001, MR 0990410, 10.1090/S0002-9939-1990-0990410-X
Reference: [2] A. Bellow, R. L. Jones: A Banach principle for $L^\infty $.Adv. Math. 120 (1996), 155–172. MR 1392277, 10.1006/aima.1996.0035
Reference: [3] M. Brundin: Approach regions for the square root of the Poisson kernel and weak $L^p$  boundary functions.Preprint 1999:56, Department of Mathematics, Göteborg University and Chalmers University of Technology, 1999.
Reference: [4] M. Brundin: Approach Regions for $L^p$  potentials with respect to fractional powers of the Poisson rernel of the halfspace.Department of Mathematics, Göteborg University and Chalmers University of Technology, 2001.
Reference: [5] M. Brundin: Approach regions for $L^p$  potentials with respect to the square root of the Poisson kernel.Math. Scand (to appear). MR 2153413
Reference: [6] F. Di Biase: Fatou Type Theorems: Maximal Functions and Approach Regions.Birkhäuser-Verlag, Boston, 1998. Zbl 0889.31002, MR 1483892
Reference: [7] P. Fatou: Séries trigonométriques et séries de Taylor.Acta Math. 30 (1906), 335–400. MR 1555035, 10.1007/BF02418579
Reference: [8] J. E.  Littlewood: On a theorem of Fatou.J.  London Math. Soc. 2 (1927), 172–176. 10.1112/jlms/s1-2.3.172
Reference: [9] A. Nagel, E. M.  Stein: On certain maximal functions and approach regions.Adv. Math. 54 (1984), 83–106. MR 0761764, 10.1016/0001-8708(84)90038-0
Reference: [10] M. M. Rao, Z. D.  Ren: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 146.Marcel Dekker, New York, 1991. MR 1113700
Reference: [11] J.-O.  Rönning: Convergence results for the square root of the Poisson kernel.Math. Scand. 81 (1997), 219–235. MR 1613784, 10.7146/math.scand.a-12876
Reference: [12] H. A. Schwarz: Zur Integration der partiellen Differentialgleichung $\frac{\partial ^{2}u}{\partial x^{2}}+\frac{\partial ^{2}u}{\partial y^{2}} =0$.J.  Reine Angew. Math. 74 (1872), 218–253.
Reference: [13] P.  Sjögren: Une remarque sur la convergence des fonctions propres du laplacien à valeur propre critique.In: Théorie du potentiel (Orsay,  1983), Springer-Verlag, Berlin, 1984, pp. 544–548. MR 0890377
Reference: [14] P. Sjögren: Approach regions for the square root of the Poisson kernel and bounded functions.Bull. Austral. Math. Soc. 55 (1997), 521–527. MR 1456282, 10.1017/S0004972700034183
.

Files

Files Size Format View
CzechMathJ_57-2007-1_26.pdf 420.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo