Previous |  Up |  Next

Article

Title: A Korovkin type approximation theorems via $\scr I$-convergence (English)
Author: Duman, O.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 367-375
Summary lang: English
.
Category: math
.
Summary: Using the concept of $\mathcal {I}$-convergence we provide a Korovkin type approximation theorem by means of positive linear operators defined on an appropriate weighted space given with any interval of the real line. We also study rates of convergence by means of the modulus of continuity and the elements of the Lipschitz class. (English)
Keyword: $\scr{I}$-convergence
Keyword: positive linear operator
Keyword: the classical Korovkin theorem
MSC: 40A99
MSC: 41A10
MSC: 41A25
MSC: 41A36
idZBL: Zbl 1174.41004
idMR: MR2309970
.
Date available: 2009-09-24T11:46:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128176
.
Reference: [1] R.  Bojanic, F.  Cheng: Estimates for the rate of approximation of functions of bounded variation by Hermite-Fejer polynomials.Proceedings of the Conference of Canadian Math. Soc. 3 (1983), 5–17. MR 0729319
Reference: [2] R.  Bojanic, M. K. Khan: Summability of Hermite-Fejer interpolation for functions of bounded variation.J.  Nat. Sci. Math. 32 (1992), 5–10.
Reference: [3] I.  Chlodovsky: Sur la representation des fonctions discontinuous par les polynômes de M. S.  Bernstein.Fund. Math. 13 (1929), 62–72. 10.4064/fm-13-1-62-72
Reference: [4] J. S.  Connor: On strong matrix summability with respect to a modulus and statistical convergence.Canad. Math. Bull. 32 (1989), 194–198. Zbl 0693.40007, MR 1006746, 10.4153/CMB-1989-029-3
Reference: [5] O.  Duman, C.  Orhan: Statistical approximation by positive linear operators.Stud. Math. 161 (2004), 187–197. MR 2033235, 10.4064/sm161-2-6
Reference: [6] O.  Duman, M. K.  Khan, C.  Orhan: $A$-statistical convergence of approximating operators.Math. Inequal. Appl. 4 (2003), 689–699. MR 2013529
Reference: [7] H.  Fast: Sur la convergence statistique.Colloq. Math. 2 (1951), 241–244. Zbl 0044.33605, MR 0048548, 10.4064/cm-2-3-4-241-244
Reference: [8] A. R.  Freedman, J. J.  Sember: Densities and summability.Pacific J.  Math. 95 (1981), 293–305. MR 0632187, 10.2140/pjm.1981.95.293
Reference: [9] J. A. Fridy: On statistical convergence.Analysis 5 (1985), 301–313. Zbl 0588.40001, MR 0816582
Reference: [10] J. A.  Fridy, H. I.  Miller: A matrix characterization of statistical convergence.Analysis 11 (1991), 59–66. MR 1113068, 10.1524/anly.1991.11.1.59
Reference: [11] G. H.  Hardy: Divergent Series.Oxford Univ. Press, London, 1949. Zbl 0032.05801, MR 0030620
Reference: [12] M. K. Khan, B.  Della Vecchia, A.  Fassih: On the monotonicity of positive linear operators.J.  Approximation Theory 92 (1998), 22–37. MR 1492856, 10.1006/jath.1996.3113
Reference: [13] E. Kolk: Matrix summability of statistically convergent sequences.Analysis 13 (1993), 77–83. Zbl 0801.40005, MR 1245744, 10.1524/anly.1993.13.12.77
Reference: [14] P. P.  Korovkin: Linear Operators and Theory of Approximation.Hindustan Publ. Comp., Delhi, 1960. MR 0150565
Reference: [15] P. Kostyrko, T.  Šalát, W.  Wilczyński: ${I}$-convergence.Real Anal. Exchange 26 (2000/01), 669–685. MR 1844385
Reference: [16] C. Kuratowski: Topologie  I.PWN, Warszawa, 1958.
Reference: [17] H. I.  Miller: A measure theoretical subsequence characterization of statistical convergence.Trans. Amer. Math. Soc. 347 (1995), 1811–1819. Zbl 0830.40002, MR 1260176, 10.1090/S0002-9947-1995-1260176-6
Reference: [18] I.  Niven, H. S.  Zuckerman, H.  Montgomery: An Introduction to the Theory of Numbers. 5th Edition.Wiley, New York, 1991. MR 1083765
Reference: [19] H. L.  Royden: Real Analysis. 2nd edition.Macmillan Publ., New York, 1968. MR 1013117
.

Files

Files Size Format View
CzechMathJ_57-2007-1_27.pdf 337.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo