Previous |  Up |  Next

Article

Title: Spaces with large relative extent (English)
Author: Song, Yan-Kui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 387-394
Summary lang: English
.
Category: math
.
Summary: In this paper, we prove the following statements: (1) For every regular uncountable cardinal $\kappa $, there exist a Tychonoff space $X$ and $Y$ a subspace of $X$ such that $Y$ is both relatively absolute star-Lindelöf and relative property (a) in $X$ and $e(Y,X) \ge \kappa $, but $Y$ is not strongly relative star-Lindelöf in $X$ and $X$ is not star-Lindelöf. (2) There exist a Tychonoff space $X$ and a subspace $Y$ of $X$ such that $Y$ is strongly relative star-Lindelöf in $X$ (hence, relative star-Lindelöf), but $Y$ is not absolutely relative star-Lindelöf in $X$. (English)
Keyword: relative topological property
Keyword: Lindelöf
Keyword: star-Lindelöf
Keyword: relative extent
Keyword: relative property (a)
MSC: 54D15
MSC: 54D20
idZBL: Zbl 1174.54014
idMR: MR2309972
.
Date available: 2009-09-24T11:46:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128178
.
Reference: [1] A. V.  Arhangel’skii, M. M. Genedi Hamdi: The origin of the theory of relative topological properties.General Topology, Space and Mappings, Moskov. Gos. Univ., Moscow, 1989, pp. 3–48. (Russian) MR 1095304
Reference: [2] A. V.  Arhangel’skii: A generic theorem in the theory of cardinal invariants of topological spaces.Comment. Math. Univ. Carolinae 36 (1995), 303–325. MR 1357532
Reference: [3] A. V.  Arhangel’skii: Relative topological properties and relative topological spaces.Topology Appl. 70 (1996), 87–99. MR 1397067, 10.1016/0166-8641(95)00086-0
Reference: [4] M.  Bonanzinga: Star-Lindelöf and absolutely star-Lindelöf spaces.Q and A in General Topology 14 (1998), 79–104. Zbl 0931.54019, MR 1642032
Reference: [5] E. K.  van Douwen, G. M.  Reed, A. W.  Roscoe, and I. J.  Tree: Star covering properties.Topology Appl. 39 (1991), 71–103. MR 1103993, 10.1016/0166-8641(91)90077-Y
Reference: [6] M. Dai: A class of topological spaces containing Lindelöf spaces and separable spaces.Chin. Ann. Math. Ser.  A 4 (1983), 571–575. MR 0742178
Reference: [7] R.  Engelking: General Topology. Rev. and compl. ed.Heldermann-Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [8] Lj. D.  Kocinac: Some relative topological properties.Mat. Ves. 44 (1992), 33–44. Zbl 0795.54002, MR 1201265
Reference: [9] M. V.  Matveev: Absolutely countably compact spaces.Topology Appl. 58 (1994), 81–92. Zbl 0801.54021, MR 1280711, 10.1016/0166-8641(94)90074-4
Reference: [10] M. V.  Matveev: A survey on star covering properties.Topology Atlas, preprint No.  330 (1998).
Reference: [11] M. V.  Matveev: A survey on star covering properties  II.Topology Atlas, preprint No.  431 (2000).
Reference: [12] M. V.  Matveev: Some questions on property  (a).Quest. Answers Gen. Topology 15 (1997), 103–111. Zbl 1002.54016, MR 1472172
Reference: [13] M. V.  Matveev, O. I.  Pavlov, and J. K.  Tartir: On relatively normal spaces, relatively regular spaces, and on relative property  (a).Topology Appl. 93 (1999), 121–129. MR 1680839, 10.1016/S0166-8641(97)00265-4
Reference: [14] M. V.  Matveev: How weak is weak extent?.Topology Appl. 119 (2002), 229–232. Zbl 0986.54003, MR 1886097, 10.1016/S0166-8641(01)00061-X
Reference: [15] M. V.  Matveev: On space in countable web.Preprint.
Reference: [16] Y-K.  Song: Spaces with large extent and large star-Lindelöf number.Houston. J.  Math. 29 (2003), 345–352. Zbl 1064.54006, MR 1987579
Reference: [17] Y-K. Song: Discretely star-Lindelöf spaces.Tsukuba J.  Math. 25 (2001), 371–382. Zbl 1011.54020, MR 1869769, 10.21099/tkbjm/1496164294
Reference: [18] Y-K. Song: On relative star-Lindelöf spaces.N. Z. Math 34 (2005), 159–163. Zbl 1099.54022, MR 2195833
Reference: [19] Y.  Yasui, Z-M. Gao: Spaces in countable web.Houston.  J. Math. 25 (1999), 327–335. MR 1697629
Reference: [20] J. E.  Vaughan: Absolute countable compactness and property  (a).Proceedings of the Eighth Prague Topological symposium, August  1996, 1996, pp. 18–24.
.

Files

Files Size Format View
CzechMathJ_57-2007-1_29.pdf 318.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo