Title:
|
Spaces with large relative extent (English) |
Author:
|
Song, Yan-Kui |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
387-394 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we prove the following statements: (1) For every regular uncountable cardinal $\kappa $, there exist a Tychonoff space $X$ and $Y$ a subspace of $X$ such that $Y$ is both relatively absolute star-Lindelöf and relative property (a) in $X$ and $e(Y,X) \ge \kappa $, but $Y$ is not strongly relative star-Lindelöf in $X$ and $X$ is not star-Lindelöf. (2) There exist a Tychonoff space $X$ and a subspace $Y$ of $X$ such that $Y$ is strongly relative star-Lindelöf in $X$ (hence, relative star-Lindelöf), but $Y$ is not absolutely relative star-Lindelöf in $X$. (English) |
Keyword:
|
relative topological property |
Keyword:
|
Lindelöf |
Keyword:
|
star-Lindelöf |
Keyword:
|
relative extent |
Keyword:
|
relative property (a) |
MSC:
|
54D15 |
MSC:
|
54D20 |
idZBL:
|
Zbl 1174.54014 |
idMR:
|
MR2309972 |
. |
Date available:
|
2009-09-24T11:46:26Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128178 |
. |
Reference:
|
[1] A. V. Arhangel’skii, M. M. Genedi Hamdi: The origin of the theory of relative topological properties.General Topology, Space and Mappings, Moskov. Gos. Univ., Moscow, 1989, pp. 3–48. (Russian) MR 1095304 |
Reference:
|
[2] A. V. Arhangel’skii: A generic theorem in the theory of cardinal invariants of topological spaces.Comment. Math. Univ. Carolinae 36 (1995), 303–325. MR 1357532 |
Reference:
|
[3] A. V. Arhangel’skii: Relative topological properties and relative topological spaces.Topology Appl. 70 (1996), 87–99. MR 1397067, 10.1016/0166-8641(95)00086-0 |
Reference:
|
[4] M. Bonanzinga: Star-Lindelöf and absolutely star-Lindelöf spaces.Q and A in General Topology 14 (1998), 79–104. Zbl 0931.54019, MR 1642032 |
Reference:
|
[5] E. K. van Douwen, G. M. Reed, A. W. Roscoe, and I. J. Tree: Star covering properties.Topology Appl. 39 (1991), 71–103. MR 1103993, 10.1016/0166-8641(91)90077-Y |
Reference:
|
[6] M. Dai: A class of topological spaces containing Lindelöf spaces and separable spaces.Chin. Ann. Math. Ser. A 4 (1983), 571–575. MR 0742178 |
Reference:
|
[7] R. Engelking: General Topology. Rev. and compl. ed.Heldermann-Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[8] Lj. D. Kocinac: Some relative topological properties.Mat. Ves. 44 (1992), 33–44. Zbl 0795.54002, MR 1201265 |
Reference:
|
[9] M. V. Matveev: Absolutely countably compact spaces.Topology Appl. 58 (1994), 81–92. Zbl 0801.54021, MR 1280711, 10.1016/0166-8641(94)90074-4 |
Reference:
|
[10] M. V. Matveev: A survey on star covering properties.Topology Atlas, preprint No. 330 (1998). |
Reference:
|
[11] M. V. Matveev: A survey on star covering properties II.Topology Atlas, preprint No. 431 (2000). |
Reference:
|
[12] M. V. Matveev: Some questions on property (a).Quest. Answers Gen. Topology 15 (1997), 103–111. Zbl 1002.54016, MR 1472172 |
Reference:
|
[13] M. V. Matveev, O. I. Pavlov, and J. K. Tartir: On relatively normal spaces, relatively regular spaces, and on relative property (a).Topology Appl. 93 (1999), 121–129. MR 1680839, 10.1016/S0166-8641(97)00265-4 |
Reference:
|
[14] M. V. Matveev: How weak is weak extent?.Topology Appl. 119 (2002), 229–232. Zbl 0986.54003, MR 1886097, 10.1016/S0166-8641(01)00061-X |
Reference:
|
[15] M. V. Matveev: On space in countable web.Preprint. |
Reference:
|
[16] Y-K. Song: Spaces with large extent and large star-Lindelöf number.Houston. J. Math. 29 (2003), 345–352. Zbl 1064.54006, MR 1987579 |
Reference:
|
[17] Y-K. Song: Discretely star-Lindelöf spaces.Tsukuba J. Math. 25 (2001), 371–382. Zbl 1011.54020, MR 1869769, 10.21099/tkbjm/1496164294 |
Reference:
|
[18] Y-K. Song: On relative star-Lindelöf spaces.N. Z. Math 34 (2005), 159–163. Zbl 1099.54022, MR 2195833 |
Reference:
|
[19] Y. Yasui, Z-M. Gao: Spaces in countable web.Houston. J. Math. 25 (1999), 327–335. MR 1697629 |
Reference:
|
[20] J. E. Vaughan: Absolute countable compactness and property (a).Proceedings of the Eighth Prague Topological symposium, August 1996, 1996, pp. 18–24. |
. |