Previous |  Up |  Next

Article

Title: Local bounded commutative residuated $\ell$-monoids (English)
Author: Rachůnek, Jiří
Author: Šalounová, Dana
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 395-406
Summary lang: English
.
Category: math
.
Summary: Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of, e.g., $BL$-algebras and Heyting algebras. In the paper, the properties of local and perfect bounded commutative $R\ell $-monoids are investigated. (English)
Keyword: residuated $\ell $-monoid
Keyword: residuated lattice
Keyword: $BL$-algebra
Keyword: $MV$-algebra
Keyword: local $R\ell $-monoid
Keyword: filter
MSC: 06D20
MSC: 06D35
MSC: 06F05
MSC: 06F35
idZBL: Zbl 1174.06331
idMR: MR2309973
.
Date available: 2009-09-24T11:46:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128179
.
Reference: [1] P.  Bahls, J.  Cole, N.  Galatos, P.  Jipsen, and C.  Tsinakis: Cancellative residuated lattices.Alg. Univ. 50 (2003), 83–106. MR 2026830, 10.1007/s00012-003-1822-4
Reference: [2] K.  Blount, C.  Tsinakis: The structure of residuated lattices.Intern. J.  Alg. Comp. 13 (2003), 437–461. MR 2022118, 10.1142/S0218196703001511
Reference: [3] R. L. O.  Cignoli, I. M. L.  D’Ottaviano, and D. Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. MR 1786097
Reference: [4] A.  Dvurečenskij, S.  Pulmannová: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. MR 1861369
Reference: [5] A.  Dvurečenskij, J.  Rachůnek: Probabilistic averaging in bounded residuated $\ell $-monoids.Semigroup Forum. 72 (2006), 191–206. MR 2216089, 10.1007/s00233-005-0545-6
Reference: [6] A.  Dvurečenskij, J.  Rachůnek: Bounded commutative residuated $\ell $-monoids with general comparability and states.Soft Comput. 10 (2006), 212–218. 10.1007/s00500-005-0473-0
Reference: [7] P.  Hájek: Metamathematics of Fuzzy Logic.Kluwer, Amsterdam, 1998. MR 1900263
Reference: [8] P.  Jipsen, C.  Tsinakis: A survey of residuated lattices.In: Ordered Algebraic Structures, J.  Martinez (ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56. MR 2083033
Reference: [9] J.  Rachůnek: $DR\ell $-semigroups and $MV$-algebras.Czechoslovak Math.  J. 48 (1998), 365–372. MR 1624268, 10.1023/A:1022801907138
Reference: [10] J.  Rachůnek: $MV$-algebras are categorically equivalent to a class of  $DR\ell _{1(i)}$ semigroups.Math. Bohemica 123 (1998), 437–441. MR 1667115
Reference: [11] J.  Rachůnek: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids.Math. Bohemica 126 (2001), 561–569. MR 1970259
Reference: [12] J.  Rachůnek, D.  Šalounová: Boolean deductive systems of bounded commutative residuated $\ell $-monoids.Contrib. Gen. Algebra 16 (2005), 199–207. MR 2166959
Reference: [13] J.  Rachůnek, V.  Slezák: Negation in bounded commutative $DR\ell $-monoids.Czechoslovak Math.  J. 56 (2006), 755–763. MR 2291772, 10.1007/s10587-006-0053-1
Reference: [14] J.  Rachůnek, V.  Slezák: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures.Math. Slovaca. 56 (2006), 223–233. MR 2229343
Reference: [15] K. L. N.  Swamy: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284
Reference: [16] K. L. N. Swamy: Dually residuated lattice ordered semigroups  III.Math. Ann. 167 (1966), 71–74. Zbl 0158.02601, MR 0200364, 10.1007/BF01361218
Reference: [17] E.  Turunen: Mathematics Behind Fuzzy Logic.Physica-Verlag, Heidelberg-New York, 1999. Zbl 0940.03029, MR 1716958
Reference: [18] E.  Turunen, S.  Sessa: Local $BL$-algebras.Multip. Val. Logic 6 (2001), 229–250. MR 1817445
.

Files

Files Size Format View
CzechMathJ_57-2007-1_30.pdf 326.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo