Title:
|
Local bounded commutative residuated $\ell$-monoids (English) |
Author:
|
Rachůnek, Jiří |
Author:
|
Šalounová, Dana |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
395-406 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of, e.g., $BL$-algebras and Heyting algebras. In the paper, the properties of local and perfect bounded commutative $R\ell $-monoids are investigated. (English) |
Keyword:
|
residuated $\ell $-monoid |
Keyword:
|
residuated lattice |
Keyword:
|
$BL$-algebra |
Keyword:
|
$MV$-algebra |
Keyword:
|
local $R\ell $-monoid |
Keyword:
|
filter |
MSC:
|
06D20 |
MSC:
|
06D35 |
MSC:
|
06F05 |
MSC:
|
06F35 |
idZBL:
|
Zbl 1174.06331 |
idMR:
|
MR2309973 |
. |
Date available:
|
2009-09-24T11:46:32Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128179 |
. |
Reference:
|
[1] P. Bahls, J. Cole, N. Galatos, P. Jipsen, and C. Tsinakis: Cancellative residuated lattices.Alg. Univ. 50 (2003), 83–106. MR 2026830, 10.1007/s00012-003-1822-4 |
Reference:
|
[2] K. Blount, C. Tsinakis: The structure of residuated lattices.Intern. J. Alg. Comp. 13 (2003), 437–461. MR 2022118, 10.1142/S0218196703001511 |
Reference:
|
[3] R. L. O. Cignoli, I. M. L. D’Ottaviano, and D. Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. MR 1786097 |
Reference:
|
[4] A. Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. MR 1861369 |
Reference:
|
[5] A. Dvurečenskij, J. Rachůnek: Probabilistic averaging in bounded residuated $\ell $-monoids.Semigroup Forum. 72 (2006), 191–206. MR 2216089, 10.1007/s00233-005-0545-6 |
Reference:
|
[6] A. Dvurečenskij, J. Rachůnek: Bounded commutative residuated $\ell $-monoids with general comparability and states.Soft Comput. 10 (2006), 212–218. 10.1007/s00500-005-0473-0 |
Reference:
|
[7] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer, Amsterdam, 1998. MR 1900263 |
Reference:
|
[8] P. Jipsen, C. Tsinakis: A survey of residuated lattices.In: Ordered Algebraic Structures, J. Martinez (ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56. MR 2083033 |
Reference:
|
[9] J. Rachůnek: $DR\ell $-semigroups and $MV$-algebras.Czechoslovak Math. J. 48 (1998), 365–372. MR 1624268, 10.1023/A:1022801907138 |
Reference:
|
[10] J. Rachůnek: $MV$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$ semigroups.Math. Bohemica 123 (1998), 437–441. MR 1667115 |
Reference:
|
[11] J. Rachůnek: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids.Math. Bohemica 126 (2001), 561–569. MR 1970259 |
Reference:
|
[12] J. Rachůnek, D. Šalounová: Boolean deductive systems of bounded commutative residuated $\ell $-monoids.Contrib. Gen. Algebra 16 (2005), 199–207. MR 2166959 |
Reference:
|
[13] J. Rachůnek, V. Slezák: Negation in bounded commutative $DR\ell $-monoids.Czechoslovak Math. J. 56 (2006), 755–763. MR 2291772, 10.1007/s10587-006-0053-1 |
Reference:
|
[14] J. Rachůnek, V. Slezák: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures.Math. Slovaca. 56 (2006), 223–233. MR 2229343 |
Reference:
|
[15] K. L. N. Swamy: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284 |
Reference:
|
[16] K. L. N. Swamy: Dually residuated lattice ordered semigroups III.Math. Ann. 167 (1966), 71–74. Zbl 0158.02601, MR 0200364, 10.1007/BF01361218 |
Reference:
|
[17] E. Turunen: Mathematics Behind Fuzzy Logic.Physica-Verlag, Heidelberg-New York, 1999. Zbl 0940.03029, MR 1716958 |
Reference:
|
[18] E. Turunen, S. Sessa: Local $BL$-algebras.Multip. Val. Logic 6 (2001), 229–250. MR 1817445 |
. |