Previous |  Up |  Next

Article

Keywords:
rigidity; hypersurfaces; topology; hyperbolic space
Summary:
In this paper we study the topological and metric rigidity of hypersurfaces in ${\mathbb H}^{n+1}$, the $(n+1)$-dimensional hyperbolic space of sectional curvature $-1$. We find conditions to ensure a complete connected oriented hypersurface in ${\mathbb H}^{n+1}$ to be diffeomorphic to a Euclidean sphere. We also give sufficient conditions for a complete connected oriented closed hypersurface with constant norm of the second fundamental form to be totally umbilic.
References:
[1] A. D. Alexandrov: A characteristic property of spheres. Ann. Mat. Pura Appl. 58 (1962), 303–315. DOI 10.1007/BF02413056 | MR 0143162
[2] H. Alencar, M. do  Carmo, and W. Santos: A gap theorem for hypersurfaces of the sphere with constant scalar curvature one. Comment. Math. Helv. 77 (2002), 549–562. DOI 10.1007/s00014-002-8351-1 | MR 1933789
[3] S. Alexander: Locally convex hypersurfaces of negatively curved spaces. Proc. Amer. Math. Soc. 64 (1977), 321–325. DOI 10.1090/S0002-9939-1977-0448262-6 | MR 0448262 | Zbl 0398.53028
[4] S. S. Chern, M. do  Carmo, and S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length. In: Functional Analysis and Related Fields, F.  Browder (ed.), Springer-Verlag, Berlin, 1970, pp. 59–75. MR 0273546
[5] M. P. do  Carmo: Riemannian Geometry. Bikhäuser-Verlag, Boston, 1993.
[6] M. P. do  Carmo, F. W. Warner: Rigidity and convexity of hypersurfaces in spheres. J.  Diff. Geom. 4 (1970), 133–144. MR 0266105
[7] S. Y. Cheng, S. T. Yau: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. DOI 10.1007/BF01425237 | MR 0431043
[8] P. Hartman, L. Nirenberg: On spherical image maps whose Jacobians do not change sign. Amer. J.  Math. 81 (1959), 901–920. DOI 10.2307/2372995 | MR 0126812
[9] H. Z. Li: Hypersurfaces with constant scalar curvature in space forms. Math. Ann. 305 (1996), 665–672. DOI 10.1007/BF01444243 | MR 1399710 | Zbl 0864.53040
[10] W. S.  Massey: Algebraic Topology: An Introduction. 4th corr. print. Graduate Texts in Mathematics Vol. 56. Springer-Verlag, New York-Heidelberg-Berlin, 1967. MR 0211390
[11] S. Montiel, A. Ros: Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. Differential geometry. Pitman Monographs. Surveys Pure Appl. Math.,  52, Longman Sci. Tech., Harlow, 1991, pp. 279–296. MR 1173047
[12] M. Okumura: Hypersurfaces and a pinching problem on the second fundamental tensor. Amer. J.  Math. 96 (1974), 207–214. DOI 10.2307/2373587 | MR 0353216 | Zbl 0302.53028
[13] C. K. Peng, C. L. Terng: Minimal hypersurfaces of spheres with constant scalar curvature. Ann. Math. Stud. 103 (1983), 177–198. MR 0795235
[14] C. K. Peng, C. L. Terng: The scalar curvature of minimal hypersurfaces in spheres. Math. Ann. 266 (1983), 105–113. DOI 10.1007/BF01458707 | MR 0722930
[15] A. Ros: Compact hypersurfaces with constant scalar curvature and a congruence theorem. J.  Differential Geom. 27 (1988), 215–223. MR 0925120 | Zbl 0638.53051
[16] A. Ros: Compact hypersurfaces with constant higher order mean curvatures. Rev. Mat. Iberoamericana 3 (1987), 447–453. MR 0996826 | Zbl 0673.53003
[17] R. Sacksteder: On hypersurfaces with no negative sectional curvatures. Amer. J.  Math. 82 (1960), 609–630. DOI 10.2307/2372973 | MR 0116292 | Zbl 0194.22701
[18] J. Simons: Minimal varieties in Riemannian manifolds. Ann. Math. 88 (1968), 62–105. DOI 10.2307/1970556 | MR 0233295 | Zbl 0181.49702
Partner of
EuDML logo