[3] E. J. Billington: 
Decomposing complete tripartite graphs into cycles of length $3$ and $4$. Discrete Math. 197/198 (1999), 123–135. 
MR 1674855[4] E. J. Billington: 
Combinatorial trades: a survey of recent results. Chapter 3 in Designs 2002: Further Computational and Constructive Design Theory (ed. W. D. Wallis), Kluwer Academic Publishers, Boston/Dordrecht/London, 2003, pp. 47–67. 
MR 2041871 | 
Zbl 1056.05014[5] N. J. Cavenagh: 
Decompositions of complete tripartite graphs into $k$-cycles. Australas. J. Combin. 18 (1998), 193–200. 
MR 1658341 | 
Zbl 0924.05051[6] N. J. Cavenagh: 
Further decompositions of complete tripartite graphs into $5$-cycles. Discrete Math. 256 (2002), 55–81. 
MR 1927056 | 
Zbl 1009.05108[7] N. J. Cavenagh and E. J. Billington: 
On decomposing complete tripartite graphs into $5$-cycles. Australas. J. Combin. 22 (2000), 41–62. 
MR 1795321[8] N. J. Cavenagh and E. J. Billington: 
Decompositions of complete multipartite graphs into cycles of even length. Graphs and Combinatorics 16 (2000), 49–65. 
DOI 10.1007/s003730050003 | 
MR 1750460[10] Z. Kocková: Decomposition of even graphs into closed trails. Abstract at Grafy ’03, Javorná, Czech Republic.
[11] J. Liu: 
The equipartite Oberwolfach problem with uniform tables. J. Combin. Theory, Ser. A 101 (2003), 20–34. 
MR 1953278 | 
Zbl 1015.05074[12] E. S. Mahmoodian and M. Mirzakhani: 
Decomposition of complete tripartite graphs into $5$-cycles. In: Combinatorics Advances, Kluwer Academic Publishers, Netherlands, 1995, pp. 235–241. 
MR 1366852