Previous |  Up |  Next

Article

Title: Exchange rings with stable range one (English)
Author: Chen, Huanyin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 579-590
Summary lang: English
.
Category: math
.
Summary: We characterize exchange rings having stable range one. An exchange ring $R$ has stable range one if and only if for any regular $a\in R$, there exist an $e\in E(R)$ and a $u\in U(R)$ such that $a=e+u$ and $aR\cap eR=0$ if and only if for any regular $a\in R$, there exist $e\in r.ann(a^+)$ and $u\in U(R)$ such that $a=e+u$ if and only if for any $a,b\in R$, $R/aR\cong R/bR\Longrightarrow aR\cong bR$. (English)
Keyword: exchange ring
Keyword: stable range one
Keyword: idempotent
Keyword: unit
MSC: 16D70
MSC: 16E20
MSC: 16E50
MSC: 16U99
MSC: 19B10
idZBL: Zbl 1161.16008
idMR: MR2337616
.
Date available: 2009-09-24T11:47:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128191
.
Reference: [1] P. Ara: The exchange property for purely infinite simple rings.Proc. Amer. Math. Soc. 132 (2004), 2543–2547. Zbl 1055.16012, MR 2054778, 10.1090/S0002-9939-04-07369-1
Reference: [2] P. Ara: Strongly $\pi $-regular rings have stable range one.Proc. Amer. Math. Soc. 124 (1996), 3293–3298. Zbl 0865.16007, MR 1343679, 10.1090/S0002-9939-96-03473-9
Reference: [3] P. Ara, K. R. Goodearl, K. C. O’Meara and E. Pardo: Separative cancellation for projective modules over exchange rings.Israel J. Math. 105 (1998), 105–137. MR 1639739, 10.1007/BF02780325
Reference: [4] V. P. Camillo and D. A. Khurana: Characterization of unit regular rings.Comm. Algebra 29 (2001), 2293–2295. MR 1837978, 10.1081/AGB-100002185
Reference: [5] V. P. Camillo and H. P. Yu: Stable range one for rings with many idempotents.Trans. Amer. Math. Soc. 347 (1995), 3141–3147. MR 1277100, 10.1090/S0002-9947-1995-1277100-2
Reference: [6] M. J. Canfell: Completion of diagrams by automorphisms and Bass’s first stable range condition.J. Algebra 176 (1995), 480–503. MR 1351620, 10.1006/jabr.1995.1255
Reference: [7] H. Chen: Full elements in regular rings.Taiwanese J. Math. 8 (2004), 203–209. Zbl 1059.16005, MR 2061688, 10.11650/twjm/1500407622
Reference: [8] H. Chen and M. Chen: Regular elements which is a sum of an idempotent and a left cancellable element.Taiwanese J. Math. 10 (2006), 881–890. MR 2229628, 10.11650/twjm/1500403880
Reference: [9] K. R. Goodearl: Von Neumann Regular Rings.Pitman, London-San Francisco-Melbourne, 1979; 2nd ed., Krieger, Malabar, Fl., 1991. Zbl 0841.16008, MR 0533669
Reference: [10] R. M. Guralnick: Matrix equivalence and isomorphism of modules.Linear Algebra Appl. 43 (1982), 125–136. Zbl 0493.16015, MR 0656440, 10.1016/0024-3795(82)90248-8
Reference: [11] R. E. Hartwig and J. Luh: A note on the group structure of unit regular ring elements.Pacific J. Math. 71 (1977), 449–461. MR 0442018, 10.2140/pjm.1977.71.449
Reference: [12] D. Khurana and T. Y. Lam: Clean matrices and unit-regular matrices.J. Algebra 280 (2004), 683–698. MR 2090058, 10.1016/j.jalgebra.2004.04.019
Reference: [13] T. Y. Lam: A crash course on stable range, cancellation, substitution, and exchange.J. Algebra Appl. 3 (2004), 301–343. Zbl 1072.16013, MR 2096452, 10.1142/S0219498804000897
Reference: [14] W. K. Nicholson: Lifting idempotents and exchange rings.Trans. Amer. Math. Soc. 229 (1977), 269–278. Zbl 0352.16006, MR 0439876, 10.1090/S0002-9947-1977-0439876-2
Reference: [15] W. K. Nicholson: Extensions of clean rings.Comm. Algebra 29 (2001), 2589–2595. Zbl 0989.16015, MR 1845131, 10.1081/AGB-100002409
Reference: [16] W. K. Nicholson and K. Varadarjan: Countable linear transformations are clean.Proc. Amer. Math. Soc. 126 (1998), 61–64. MR 1452816, 10.1090/S0002-9939-98-04397-4
Reference: [17] H. P. Yu: Stable range one for exchange rings.J. Pure. Appl. Algebra 98 (1995), 105–109. Zbl 0837.16009, MR 1317002, 10.1016/0022-4049(95)90029-2
.

Files

Files Size Format View
CzechMathJ_57-2007-2_5.pdf 340.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo