Previous |  Up |  Next

Article

Title: Subdirectly irreducible sectionally pseudocomplemented semilattices (English)
Author: Halaš, R.
Author: Kühr, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 725-735
Summary lang: English
.
Category: math
.
Summary: Sectionally pseudocomplemented semilattices are an extension of relatively pseudocomplemented semilattices—they are meet-semilattices with a greatest element such that every section, i.e., every principal filter, is a pseudocomplemented semilattice. In the paper, we give a simple equational characterization of sectionally pseudocomplemented semilattices and then investigate mainly their congruence kernels which leads to a characterization of subdirectly irreducible sectionally pseudocomplemented semilattices. (English)
Keyword: sectionally pseudocomplemented semilattice
Keyword: weakly standard element
MSC: 06A12
MSC: 06D15
idZBL: Zbl 1174.06302
idMR: MR2337626
.
Date available: 2009-09-24T11:48:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128201
.
Reference: [1] S. Burris and H. P. Sankappanavar: A Course in Universal Algebra.Springer Verlag, New York, 1981. MR 0648287
Reference: [2] I. Chajda: An extension of relative pseudocomplementation to non-distributive lattices.Acta Sci. Math. (Szeged) 69 (2003), 491–496. Zbl 1048.06005, MR 2034188
Reference: [3] I. Chajda, G. Eigenthaler and H. Länger: Congruence Classes in Universal Algebra.Heldermann Verlag, Lemgo, 2003. MR 1985832
Reference: [4] I. Chajda and R. Halaš: Sectionally pseudocomplemented lattices and semilattices. In: K. P. Shum (ed.) et al., Advances in Algebra. Proceedings of the ICM sattelite conference in algebra and related topics, Hong Kong, China, August 14–17, 2002. World Scientific, River Edge.2003, pp. 282–290. MR 2088449
Reference: [5] I. Chajda and S. Radeleczki: On varieties defined by pseudocomplemented nondistributive lattices.Publ. Math. Debrecen 63 (2003), 737–750. MR 2020784
Reference: [6] G. Grätzer: General Lattice Theory (2nd edition).Birkhäuser Verlag, Basel-Boston-Berlin, 1998. MR 1670580
Reference: [7] P. Köler: Brouwerian semilattices.Trans. Amer. Math. Soc. 268 (1981), 103–126. MR 0628448, 10.1090/S0002-9947-1981-0628448-3
Reference: [8] W. C. Nemitz: Implicative semi-lattices.Trans. Amer. Math. Soc. 117 (1965), 128–142. Zbl 0128.24804, MR 0176944, 10.1090/S0002-9947-1965-0176944-9
Reference: [9] J. C. Varlet: A generalization of the notion of pseudo-complementedeness.Bull. Soc. Roy. Liège 37 (1968), 149–158. MR 0228390
.

Files

Files Size Format View
CzechMathJ_57-2007-2_15.pdf 321.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo