Title:
|
Matrix refinement equations: Continuity and smoothness (English) |
Author:
|
He, Xing-Gang |
Author:
|
Liu, Chun-Tai |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
2 |
Year:
|
2007 |
Pages:
|
747-762 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we give some criteria for the existence of compactly supported $C^{k+\alpha }$-solutions ($k$ is an integer and $0\le \alpha <1$) of matrix refinement equations. Several examples are presented to illustrate the general theory. (English) |
Keyword:
|
matrix refinement equation |
Keyword:
|
continuity |
Keyword:
|
smoothness |
Keyword:
|
iteration |
Keyword:
|
multi-wavelet |
MSC:
|
39B12 |
MSC:
|
39B42 |
MSC:
|
42C40 |
idZBL:
|
Zbl 1174.42043 |
idMR:
|
MR2337628 |
. |
Date available:
|
2009-09-24T11:49:10Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128203 |
. |
Reference:
|
[1] A. S. Cavaretta, W. Dahmen and C. A. Micchelli: Stationary subdivision.Memoirs of Amer. Math. Soc., Vol. 93, 1991. MR 1079033 |
Reference:
|
[2] A. Cohen, I. Daubechies and G. Plonka: Regularity of refinable function vectors.J. Fourier Anal. Appl. 3 (1997), 295–324. MR 1448340, 10.1007/BF02649113 |
Reference:
|
[3] A. Cohen, K. Gröchenig and L. F. Villemoes: Regularity of multivariate refinable functions.Constr. Approx. 15 (1999), 241–255. MR 1668921, 10.1007/s003659900106 |
Reference:
|
[4] D. Colella and C. Heil: Characterizations of scaling functions: Continuous solutions.SIAM J. Matrix Anal. Appl. 15 (1994), 496–518. MR 1266600, 10.1137/S0895479892225336 |
Reference:
|
[5] C. Heil and D. Colella: Matrix refinement equations: Existence and uniqueness.J. Fourier Anal. Appl. 2 (1996), 363–377. MR 1395770 |
Reference:
|
[6] I. Daubechies and J. Lagarias: Two-scale difference equation I.Existence and global regularity of solutions SIAM J. Math. Anal. 22 (1991), 1388–1410. MR 1112515, 10.1137/0522089 |
Reference:
|
[7] I. Daubechies and J. Lagarias: Two-scale difference equation II. Local regularity, infinite products of matrices, and fractals.SIAM J. Math. Anal. 22 (1991), 1388–1410. MR 1112515 |
Reference:
|
[8] T. A. Hogan: A note on matrix refinement equation.SIAM J. Math. Anal. 29 4 (1998), 849–854. MR 1617730, 10.1137/S003614109630135X |
Reference:
|
[9] R. Q. Jia, K. S. Lau and J. R. Wang: $L_p$ solutions of refinement equations.J. Fourier Anal. and Appli. 7 (2001), 143–167. MR 1817673, 10.1007/BF02510421 |
Reference:
|
[10] K. S. Lau and J. R. Wang: Characterization of $L^p$-solutions for the two-scale dilation equations.SIAM J. Math. Anal. 26 (1995), 1018–1046. MR 1338372, 10.1137/S0036141092238771 |
Reference:
|
[11] P. Massopust, D. Ruch and P. Van Fleet: On the support properties of scaling vectors.Appl. Comp. Harmonic Anal. 3 (1996), 229–238. MR 1400081, 10.1006/acha.1996.0018 |
Reference:
|
[12] C. A. Micchelli and H. Prautzsch: Uniform refinement of curves Linear Algebra and Its Applications.114/115 (1989), 841–870. MR 0986909 |
Reference:
|
[13] G. Plonka and V. Strela: From wavelets to multiwavelets.Mathematical methods for curves and surfaces, 2 (Lillehammer) (1997), 375–399. MR 1640571 |
Reference:
|
[14] Z. W. Shen: Refinable function vectors.SIAM J. Math. Anal. 29 (1998), 235–250. Zbl 0913.42028, MR 1617183, 10.1137/S0036141096302688 |
Reference:
|
[15] D. X. Zhou: Existence of multiple refinable distributions.Michigan Math. J. 44 (1997), 317–329. Zbl 0901.42022, MR 1460417, 10.1307/mmj/1029005707 |
. |