Previous |  Up |  Next

Article

Title: Matrix refinement equations: Continuity and smoothness (English)
Author: He, Xing-Gang
Author: Liu, Chun-Tai
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 747-762
Summary lang: English
.
Category: math
.
Summary: In this paper we give some criteria for the existence of compactly supported $C^{k+\alpha }$-solutions ($k$ is an integer and $0\le \alpha <1$) of matrix refinement equations. Several examples are presented to illustrate the general theory. (English)
Keyword: matrix refinement equation
Keyword: continuity
Keyword: smoothness
Keyword: iteration
Keyword: multi-wavelet
MSC: 39B12
MSC: 39B42
MSC: 42C40
idZBL: Zbl 1174.42043
idMR: MR2337628
.
Date available: 2009-09-24T11:49:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128203
.
Reference: [1] A. S. Cavaretta, W. Dahmen and C. A. Micchelli: Stationary subdivision.Memoirs of Amer. Math. Soc., Vol. 93, 1991. MR 1079033
Reference: [2] A. Cohen, I. Daubechies and G. Plonka: Regularity of refinable function vectors.J. Fourier Anal. Appl. 3 (1997), 295–324. MR 1448340, 10.1007/BF02649113
Reference: [3] A. Cohen, K. Gröchenig and L. F. Villemoes: Regularity of multivariate refinable functions.Constr. Approx. 15 (1999), 241–255. MR 1668921, 10.1007/s003659900106
Reference: [4] D. Colella and C. Heil: Characterizations of scaling functions: Continuous solutions.SIAM J. Matrix Anal. Appl. 15 (1994), 496–518. MR 1266600, 10.1137/S0895479892225336
Reference: [5] C. Heil and D. Colella: Matrix refinement equations: Existence and uniqueness.J. Fourier Anal. Appl. 2 (1996), 363–377. MR 1395770
Reference: [6] I. Daubechies and J. Lagarias: Two-scale difference equation I.Existence and global regularity of solutions SIAM J. Math. Anal. 22 (1991), 1388–1410. MR 1112515, 10.1137/0522089
Reference: [7] I. Daubechies and J. Lagarias: Two-scale difference equation II. Local regularity, infinite products of matrices, and fractals.SIAM J. Math. Anal. 22 (1991), 1388–1410. MR 1112515
Reference: [8] T. A. Hogan: A note on matrix refinement equation.SIAM J. Math. Anal. 29 4 (1998), 849–854. MR 1617730, 10.1137/S003614109630135X
Reference: [9] R. Q. Jia, K. S. Lau and J. R. Wang: $L_p$ solutions of refinement equations.J. Fourier Anal. and Appli. 7 (2001), 143–167. MR 1817673, 10.1007/BF02510421
Reference: [10] K. S. Lau and J. R. Wang: Characterization of $L^p$-solutions for the two-scale dilation equations.SIAM J. Math. Anal. 26 (1995), 1018–1046. MR 1338372, 10.1137/S0036141092238771
Reference: [11] P. Massopust, D. Ruch and P. Van Fleet: On the support properties of scaling vectors.Appl. Comp. Harmonic Anal. 3 (1996), 229–238. MR 1400081, 10.1006/acha.1996.0018
Reference: [12] C. A. Micchelli and H. Prautzsch: Uniform refinement of curves Linear Algebra and Its Applications.114/115 (1989), 841–870. MR 0986909
Reference: [13] G. Plonka and V. Strela: From wavelets to multiwavelets.Mathematical methods for curves and surfaces, 2 (Lillehammer) (1997), 375–399. MR 1640571
Reference: [14] Z. W. Shen: Refinable function vectors.SIAM J. Math. Anal. 29 (1998), 235–250. Zbl 0913.42028, MR 1617183, 10.1137/S0036141096302688
Reference: [15] D. X. Zhou: Existence of multiple refinable distributions.Michigan Math. J. 44 (1997), 317–329. Zbl 0901.42022, MR 1460417, 10.1307/mmj/1029005707
.

Files

Files Size Format View
CzechMathJ_57-2007-2_17.pdf 379.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo