Previous |  Up |  Next

Article

Title: Ideals of homogeneous polynomials and weakly compact approximation property in Banach spaces (English)
Author: Çalışkan, Erhan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 2
Year: 2007
Pages: 763-776
Summary lang: English
.
Category: math
.
Summary: We show that a Banach space $E$ has the weakly compact approximation property if and only if each continuous Banach-valued polynomial on $E$ can be uniformly approximated on compact sets by homogeneous polynomials which are members of the ideal of homogeneous polynomials generated by weakly compact linear operators. An analogous result is established also for the compact approximation property. (English)
Keyword: compact approximation property
Keyword: weakly compact approximation property
Keyword: ideals of homogeneous polynomials
MSC: 46B28
MSC: 46G20
MSC: 46G25
MSC: 47B10
MSC: 47L20
idZBL: Zbl 1174.46008
idMR: MR2337629
.
Date available: 2009-09-24T11:49:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128204
.
Related article: http://dml.cz/handle/10338.dmlcz/140611
.
Reference: [1] R. M.  Aron, G. Galindo: Weakly compact multilinear mappings.Proc. Edinb. Math. Soc. 40 (1997), 181–192. MR 1437822, 10.1017/S0013091500023543
Reference: [2] R. M.  Aron, C.  Hervés, and M.  Valdivia: Weakly continuous mappings on Banach spaces.J.  Funct. Anal. 52 (1983), 189–204. MR 0707203, 10.1016/0022-1236(83)90081-2
Reference: [3] K.  Astala, H.-O.  Tylli: Seminorms related to weak compactness and to Tauberian operators.Math. Proc. Camb. Philos. Soc. 107 (1990), 367–375. MR 1027789, 10.1017/S0305004100068638
Reference: [4] G.  Botelho: Weakly compact and absolutely summing polynomials.J. Math. Anal. Appl. 265 (2002), 458–462. Zbl 1036.46034, MR 1876152, 10.1006/jmaa.2001.7674
Reference: [5] G.  Botelho: Ideals of polynomials generated by weakly compact operators.Note Mat. 25 (2005/2006), 69–102. MR 2220454
Reference: [6] G.  Botelho, D. M.  Pellegrino: Two new properties of ideals of polynomials and applications.Indag. Math. 16 (2005), 157–169. MR 2319290, 10.1016/S0019-3577(05)80019-9
Reference: [7] C.  Boyd: Montel and reflexive preduals of the space of holomorphic functions.Stud. Math. 107 (1993), 305–315. MR 1247205, 10.4064/sm-107-3-305-315
Reference: [8] H. A.  Braunss, H.  Junek: Factorization of injective ideals by interpolation.J.  Math. Anal. Appl. 297 (2004), 740–750. MR 2088691, 10.1016/j.jmaa.2004.04.045
Reference: [9] P. G.  Casazza: Approximation properties.In: Handbook of the Geometry of Banach Spaces, Vol.  I, W.  Johnson, J.  Lindenstrauss (eds.), North-Holland, Amsterdam, 2001, pp. 271–316. Zbl 1067.46025, MR 1863695
Reference: [10] E.  Çalışkan: Aproximação de funções holomorfas em espaços de dimensão infinita.PhD. Thesis, Universidade Estadual de Campinas, São Paulo, 2003.
Reference: [11] E.  Çalışkan: Bounded holomorphic mappings and the compact approximation property.Port. Math. 61 (2004), 25–33. MR 2040241
Reference: [12] E. Çalışkan: Approximation of holomorphic mappings on infinite dimensional spaces.Rev. Mat. Complut. 17 (2004), 411–434. MR 2083963
Reference: [13] A. M.  Davie: The approximation problem for Banach spaces.Bull. London Math. Soc. 5 (1973), 261–266. Zbl 0267.46013, MR 0338735, 10.1112/blms/5.3.261
Reference: [14] W.  Davis, T.  Figiel, W.  Johnson, and A. Pełczyński: Factoring weakly compact operators.J.  Funct. Anal. 17 (1974), 311–327. MR 0355536, 10.1016/0022-1236(74)90044-5
Reference: [15] S.  Dineen: Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Math.Springer-Verlag, Berlin, 1999. MR 1705327
Reference: [16] T.  Figiel: Factorization of compact opertors and applications to the approximation problem.Stud. Math. 45 (1973), 191–210. MR 0336294, 10.4064/sm-45-2-191-210
Reference: [17] N.  Grønbæk, G. A.  Willis: Approximate identities in Banach algebras of compact operators.Can. Math. Bull. 36 (1993), 45–53. MR 1205894, 10.4153/CMB-1993-008-8
Reference: [18] S.  Heinrich: Closed operator ideals and interpolation.J.  Funct. Anal. 35 (1980), 397–411. Zbl 0439.47029, MR 0563562, 10.1016/0022-1236(80)90089-0
Reference: [19] Å.  Lima, O.  Nygaard, and E.  Oja: Isometric factorization of weakly compact operators and the approximation property.Isr. J.  Math. 119 (2000), 325–348. MR 1802659, 10.1007/BF02810673
Reference: [20] J.  Lindenstrauss: Weakly compact sets—their topological properties and the Banach spaces they generate.In: Symposium on Infinite Dimensional Topology. Ann. Math. Stud., R. D.  Anderson (eds.), Princeton Univ. Press, Princeton, 1972, pp. 235–273. Zbl 0232.46019, MR 0417761
Reference: [21] J.  Lindenstrauss, L.  Tzafriri: Classical Banach Spaces  I. Sequence Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0500056
Reference: [22] J.  Mujica: Complex Analysis in Banach Spaces. North-Holland Math. Stud.North-Holland, Amsterdam, 1986. MR 0842435
Reference: [23] J.  Mujica: Linearization of bounded holomorphic mappings on Banach spaces.Trans. Am. Math. Soc. 324 (1991), 867–887. Zbl 0747.46038, MR 1000146, 10.1090/S0002-9947-1991-1000146-2
Reference: [24] J.  Mujica: Reflexive spaces of homogeneous polynomials.Bull. Pol. Acad. Sci. Math. 49 (2001), 211–223. Zbl 1068.46027, MR 1863260
Reference: [25] J.  Mujica, M.  Valdivia: Holomorphic germs on Tsirelson’s space.Proc. Am. Math. Soc. 123 (1995), 1379–1384. MR 1219730
Reference: [26] A.  Pietsch: Operator Ideals.North Holland, Amsterdam, 1980. Zbl 0455.47032, MR 0582655
Reference: [27] A.  Pietsch: Ideals of multilinear functionals.In: Proceedings of the Second International Conference on Operator Algebras, Ideals and Applications in Theoretical Physics, Teubner, Leipzig, 1983, pp. 185–199. Zbl 0561.47037, MR 0763541
Reference: [28] R.  Ryan: Applications of topological tensor products to infinite dimensional holomorphy.PhD. Thesis, Trinity College, Dublin, 1980.
Reference: [29] G.  Willis: The compact approximation property does not imply the approximation property.Stud. Math. 103 (1992), 99–108. Zbl 0814.46017, MR 1184105, 10.4064/sm-103-1-99-108
.

Files

Files Size Format View
CzechMathJ_57-2007-2_18.pdf 382.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo